1,212 research outputs found

    Kaluza-Klein States versus Winding States: Can Both Be Above the String Scale?

    Get PDF
    When closed strings propagate in extra compactified dimensions, a rich spectrum of Kaluza-Klein states and winding states emerges. Since the masses of Kaluza-Klein states and winding states play a reciprocal role, it is often believed that either the lightest Kaluza-Klein states or the lightest winding states must be at or below the string scale. In this paper, we demonstrate that this conclusion is no longer true for compactifications with non-trivial shape moduli. Specifically, we demonstrate that toroidal compactifications exist for which all Kaluza-Klein states as well as all winding states are heavier than the string scale. This observation could have important phenomenological implications for theories with reduced string scales, suggesting that it is possible to cross the string scale without detecting any states associated with spacetime compactification.Comment: 8 pages, LaTeX, no figure

    Annealing of radiation induced defects in silicon in a simplified phenomenological model

    Get PDF
    The concentration of primary radiation induced defects has been previously estimated considering both the explicit mechanisms of the primary interaction between the incoming particle and the nuclei of the semiconductor lattice, and the recoil energy partition between ionisation and displacements, in the frame of the Lindhard theory. The primary displacement defects are vacancies and interstitials, that are essentially unstable in silicon. They interact via migration, recombination, annihilation or produce other defects. In the present work, the time evolution of the concentration of defects induced by pions in medium and high resistivity silicon for detectors is modelled, after irradiation. In some approximations, the differential equations representing the time evolution processes could be decoupled. The theoretical equations so obtained are solved analytically in some particular cases, with one free parameter, for a wide range of particle fluences and/or for a wide energy range of the incident particles, for different temperatures; the corresponding stationary solutions are also presented.Comment: 14 pages, 5 figures, accepted to Nuclear Instruments and Methods in Physics Research B second version, major revisio

    Ultraviolet dependence of Kaluza-Klein effects on electroweak observables

    Get PDF
    In extensions of the standard model (SM) with d extra dimensions at the TeV scale the virtual exchange of Kaluza-Klein (KK) excitations of the gauge bosons gives contributions that change the SM relations between electroweak observables. These corrections are finite only for d=1; for d\ge 2 the infinite tower of KK modes gives a divergent contribution that has to be regularized introducing a cutoff (the string scale). However, the ultraviolet dependence of the KK effects is completely different if the running of the couplings with the scale is taken into account. We find that for larger d the number of excitations at each KK level increases, but their larger number is compensated by the smaller value of the gauge coupling at that scale. As a result, for any number of extra dimensions the exchange of the complete KK tower always gives a finite contribution. We show that (i) for d=1 the running of the gauge coupling decreases an 14% the effect of the KK modes on electroweak observables; (ii) in all cases more than 90% of the total effect comes from the excitations in the seven lowest KK levels and is then independent of ultraviolet physics.Comment: 8 pages, to appear in Phys. Rev.

    Adventures in Thermal Duality (II): Towards a Duality-Covariant String Thermodynamics

    Full text link
    In a recent companion paper, we observed that the rules of ordinary thermodynamics generally fail to respect thermal duality, a symmetry of string theory under which the physics at temperature T is related to the physics at the inverse temperature 1/T. Even when the free energy and internal energy exhibit the thermal duality symmetry, the entropy and specific heat are defined in such a way that this symmetry is destroyed. In this paper, we propose a modification of the traditional definitions of these quantities, yielding a manifestly duality-covariant thermodynamics. At low temperatures, these modifications produce "corrections" to the standard definitions of entropy and specific heat which are suppressed by powers of the string scale. These corrections may nevertheless be important for the full development of a consistent string thermodynamics. We find, for example, that the string-corrected entropy can be smaller than the usual entropy at high temperatures, suggesting a possible connection with the holographic principle. We also discuss some outstanding theoretical issues prompted by our approach.Comment: 31 pages, 6 figures, 1 conversatio

    Bulk Fermion Stars with New Dimensions

    Get PDF
    Many efforts have been devoted to the studies of the phenomenology in particle physics with extra dimensions. We propose degenerate fermion stars with extra dimensions and study what features characterized by the size of extra dimensions should appear in its structure. We find that Kaluza-Klein excited modes arise for the larger scale of extra dimensions and examine the conditions on which different layers should be caused in the inside of the stars. We expound how the extra dimensions affect on physical quantities.Comment: 20 pages, 14 figure

    Stabilization of Sub-Millimeter Dimensions: The New Guise of the Hierarchy Problem

    Get PDF
    A new framework for solving the hierarchy problem was recently proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a \tev and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this picture the standard model fields are localized to a (3+1)(3+1)-dimensional wall or ``3-brane''. The hierarchy problem becomes isomorphic to the problem of the largeness of the extra dimensions. This is in turn inextricably linked to the cosmological constant problem, suggesting the possibility of a common solution. The radii of the extra dimensions must be prevented from both expanding to too great a size, and collapsing to the fundamental Planck length \tev^{-1}. In this paper we propose a number of mechanisms addressing this question. We argue that a positive bulk cosmological constant Λˉ\bar\Lambda can stabilize the internal manifold against expansion, and that the value of Λˉ\bar\Lambda is not unstable to radiative corrections provided that the supersymmetries of string theory are broken by dynamics on our 3-brane. We further argue that the extra dimensions can be stabilized against collapse in a phenomenologically successful way by either of two methods: 1) Large, topologically conserved quantum numbers associated with higher-form bulk U(1) gauge fields, such as the naturally occurring Ramond-Ramond gauge fields, or the winding number of bulk scalar fields. 2) The brane-lattice-crystallization of a large number of 3-branes in the bulk. These mechanisms are consistent with theoretical, laboratory, and cosmological considerations such as the absence of large time variations in Newton's constant during and after primordial nucleosynthesis, and millimeter-scale tests of gravity.Comment: Corrected referencing to important earlier work by Sundrum, errors fixed, additional discussion on radion phenomenology, conclusions unchanged, 23 pages, LaTe

    Shape of Deconstruction

    Full text link
    We construct a six-dimensional Maxwell theory using a latticized extra space, the continuum limit of which is a shifted torus recently discussed by Dienes. This toy model exhibits the correspondence between continuum theory and discrete theory, and give a geometrical insight to theory-space model building.Comment: 10 pages, 2 figures, RevTeX4. a citation adde

    On Effective Theory of Brane World with Small Tension

    Get PDF
    The five dimensional theory compactified on S1S^1 with two ``branes'' (two domain walls) embedded in it is constructed, based on the field-theoretic mechanism to generate the ``brane''. Some light states localized in the ``brane'' appear in the theory. One is the Nambu-Goldstone boson, which corresponds to the breaking of the translational invariance in the transverse direction of the ``brane''. In addition, if the tension of the ``brane'' is smaller than the fundamental scale of the original theory, it is found that there may exist not only massless states but also some massive states lighter than the fundamental scale in the ``brane''. We analyze the four dimensional effective theory by integrating out the freedom of the fifth dimension. We show that some effective couplings can be explicitly calculated. As one of our results, some effective couplings of the state localized in the ``brane'' to the higher Kaluza-Klein modes in the bulk are found to be suppressed by the width of the ``brane''. The resultant suppression factor can be quantitatively different from the one analyzed by Bando et al. using the Nambu-Goto action, while they are qualitatively the same.Comment: 17 pages, uses REVTEX macr

    Invisible Axions and Large-Radius Compactifications

    Get PDF
    We study some of the novel effects that arise when the QCD axion is placed in the ``bulk'' of large extra spacetime dimensions. First, we find that the mass of the axion can become independent of the energy scale associated with the breaking of the Peccei-Quinn symmetry. This implies that the mass of the axion can be adjusted independently of its couplings to ordinary matter, thereby providing a new method of rendering the axion invisible. Second, we discuss the new phenomenon of laboratory axion oscillations (analogous to neutrino oscillations), and show that these oscillations cause laboratory axions to ``decohere'' extremely rapidly as a result of Kaluza-Klein mixing. This decoherence may also be a contributing factor to axion invisibility. Third, we discuss the role of Kaluza-Klein axions in axion-mediated processes and decays, and propose several experimental tests of the higher-dimensional nature of the axion. Finally, we show that under certain circumstances, the presence of an infinite tower of Kaluza-Klein axion modes can significantly accelerate the dissipation of the energy associated with cosmological relic axion oscillations, thereby enabling the Peccei-Quinn symmetry-breaking scale to exceed the usual four-dimensional relic oscillation bounds. Together, these ideas therefore provide new ways of obtaining an ``invisible'' axion within the context of higher-dimensional theories with large-radius compactifications.Comment: 43 pages, LaTeX, 6 figure
    • 

    corecore