4 research outputs found

    APOE Δ4 and exercise interact in a sex-specific manner to modulate dementia risk factors

    Get PDF
    Abstract Introduction: Apolipoprotein E (APOE) Δ4 is the strongest genetic risk factor for Alzheimer\u27s disease and related dementias (ADRDs), affecting many different pathways that lead to cognitive decline. Exercise is one of the most widely proposed prevention and intervention strategies to mitigate risk and symptomology of ADRDs. Importantly, exercise and APOE Δ4 affect similar processes in the body and brain. While both APOE Δ4 and exercise have been studied extensively, their interactive effects are not well understood. Methods: To address this, male and female APOE Δ3/Δ3, APOE Δ3/Δ4, and APOE Δ4/Δ4 mice ran voluntarily from wean (1 month) to midlife (12 months). Longitudinal and cross-sectional phenotyping were performed on the periphery and the brain, assessing markers of risk for dementia such as weight, body composition, circulating cholesterol composition, murine daily activities, energy expenditure, and cortical and hippocampal transcriptional profiling. Results: Data revealed chronic running decreased age-dependent weight gain, lean and fat mass, and serum low-density lipoprotein concentration dependent on APOE genotype. Additionally, murine daily activities and energy expenditure were significantly influenced by an interaction between APOE genotype and running in both sexes. Transcriptional profiling of the cortex and hippocampus predicted that APOE genotype and running interact to affect numerous biological processes including vascular integrity, synaptic/neuronal health, cell motility, and mitochondrial metabolism, in a sex-specific manner. Discussion: These data in humanized mouse models provide compelling evidence that APOE genotype should be considered for population-based strategies that incorporate exercise to prevent ADRDs and other APOE-relevant diseases

    Meox2 Haploinsufficiency Accelerates Axonal Degeneration in DBA/2J Glaucoma.

    Get PDF
    Purpose: Glaucoma is a complex disease with major risk factors including advancing age and increased intraocular pressure (IOP). Dissecting these earliest events will likely identify new avenues for therapeutics. Previously, we performed transcriptional profiling in DBA/2J (D2) mice, a widely used mouse model relevant to glaucoma. Here, we use these data to identify and test regulators of early gene expression changes in DBA/2J glaucoma. Methods: Upstream regulator analysis (URA) in Ingenuity Pathway Analysis was performed to identify potential master regulators of differentially expressed genes. The function of one putative regulator, mesenchyme homeobox 2 (Meox2), was tested using a combination of genetic, biochemical, and immunofluorescence approaches. Results: URA identified Meox2 as a potential regulator of early gene expression changes in the optic nerve head (ONH) of DBA/2J mice. Meox2 haploinsufficiency did not affect the characteristic diseases of the iris or IOP elevation seen in DBA/2J mice but did cause a significant increase in the numbers of eyes with axon damage compared to controls. While young mice appeared normal, aged Meox2 haploinsufficient DBA/2J mice showed a 44% reduction in MEOX2 protein levels. This correlated with modulation of age- and disease-specific vascular and myeloid alterations. Conclusions: Our data support a model whereby Meox2 controls IOP-dependent vascular remodeling and neuroinflammation to promote axon survival. Promoting these earliest responses prior to IOP elevation may be a viable neuroprotective strategy to delay or prevent human glaucoma

    APOE Δ4 and exercise interact in a sex‐specific manner to modulate dementia risk factors

    No full text
    Abstract Introduction Apolipoprotein E (APOE) Δ4 is the strongest genetic risk factor for Alzheimer's disease and related dementias (ADRDs), affecting many different pathways that lead to cognitive decline. Exercise is one of the most widely proposed prevention and intervention strategies to mitigate risk and symptomology of ADRDs. Importantly, exercise and APOE Δ4 affect similar processes in the body and brain. While both APOE Δ4 and exercise have been studied extensively, their interactive effects are not well understood. Methods To address this, male and female APOE Δ3/Δ3, APOE Δ3/Δ4, and APOE Δ4/Δ4 mice ran voluntarily from wean (1 month) to midlife (12 months). Longitudinal and cross‐sectional phenotyping were performed on the periphery and the brain, assessing markers of risk for dementia such as weight, body composition, circulating cholesterol composition, murine daily activities, energy expenditure, and cortical and hippocampal transcriptional profiling. Results Data revealed chronic running decreased age‐dependent weight gain, lean and fat mass, and serum low‐density lipoprotein concentration dependent on APOE genotype. Additionally, murine daily activities and energy expenditure were significantly influenced by an interaction between APOE genotype and running in both sexes. Transcriptional profiling of the cortex and hippocampus predicted that APOE genotype and running interact to affect numerous biological processes including vascular integrity, synaptic/neuronal health, cell motility, and mitochondrial metabolism, in a sex‐specific manner. Discussion These data in humanized mouse models provide compelling evidence that APOE genotype should be considered for population‐based strategies that incorporate exercise to prevent ADRDs and other APOE‐relevant diseases
    corecore