15 research outputs found

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Sample Grain Influences the Functional Relationship Between Canopy Cover and Gopher Tortoise ( Gopherus polyphemus

    No full text
    Change in vegetation structure alters habitat suitability for the threatened gopher tortoise (Gopherus polyphemus). An understanding of this dynamic is crucial to inform habitat and tortoise management strategies. However, it is not known how the choice of the sample grain (i.e., cell size) at which vegetation structure is measured impacts estimates of tortoise-habitat relationships. We used lidar remote sensing to estimate canopy cover around 1573 gopher tortoise burrows at incrementally larger sample grains (1-707 m2) in 450 ha of longleaf pine (Pinus palustris) savanna. Using an information theoretic approach, we demonstrate that the choice of grain size profoundly influences modeled relationships between canopy cover and burrow abandonment. At the most supported grain size (314 m2), the probability of burrow abandonment increased by 1.7% with each percent increase in canopy cover. Ultimately, detecting the appropriate sample grain can lead to more effective development of functional relationships and improve predictive models to manage gopher tortoise habitats
    corecore