174 research outputs found
MEMS VOA with polymeric thermal microactuators
A MEMS VOA with polymeric microactuators using microoptics is presented. Its insertion loss < 0.5 dB, dynamic range > 50 dB, power and time for 20 dB, < 40 mW and 40 ms resp
High speed electro optic polymer micro-ring resonator
An electro-optic polymer micro-ring resonator for high speed modulation was designed, realized and characterized. The design of layer-stack and electrodes was done such that modulation frequencies up till 1 GHz should be possible. The device consists of a ridge waveguide, defined in a negative photoresist (SU8), with a poled electro-optic polymeric (PMMA-DR1) ring-resonator vertically coupled to it. The complete layerstack is sandwiched between electrodes to apply an electric field over the ringresonator in order to shift its resonance wavelength. Electro optic modulation was measured up to 50 MHz limited by weak modulation depth. Optimizing the polingprocess will increase the modulation efficiency thereby making modulation frequencies of 1 GHz measurable
A novel high-speed polymeric EO modulator based on a combination of a microring resonator and an MZI
A Mach-Zehnder interferometer with an electrooptic polymer mircroring resonator adjacent to one of its branches is realized in a polymer layer stack. The microresonator is defined by reactive ion etching in the nonlinear PMMA-DR1 polymer and waveguide definition is done without etching, by using a negative photoresist (SU8) as waveguide layer. Electrooptic coefficients of 10 pm/V and modulation frequencies of 1 GHz were measured
Continuous-wave Lasers in Polymer waveguides
Channel waveguides based on a polymer, 6-fluorinated-dianhydride/epoxy, which is actively doped with a rare-earth-ion-doped complex, Nd(thenoyltrifluoroacetone)3 1,10-phenanthroline, have been fabricated. Photoluminescence peaks at 880 nm, 1060 nm, and 1330 nm have been experimentally observed. By optimization of the fabrication\ud
procedure of both, host material and optical structure, continuous-wave laser operation on both, the four-level and quasi-three-level transitions near 1060 nm and 880 nm, respectively, has been demonstrated in channel waveguides
High speed polymer E-O modulator consisting of a MZI with a microring resonator
A Mach-Zehnder interferometer with an polymer electro-optic micro-ring resonator on one of its branches is realized in a polymer layerstack and characterized. Electro-optic coefficients of 10 pm/V and modulation frequencies of 1 GHz were measured
Multimode waveguides of Photodefinable epoxy for optical backplane applications
We developed photodefined, multimode-fiber compatible waveguides based on epoxies. These waveguides will be embedded in backplane PCB’s for optical interconnect applications using 850 nm VCSELs as light sources. Apart from very low loss, the material selection took into account, PCB compatibility and low yellowing due to high temperature processing (for PCB lamination and soldering). The waveguides showed losses < 0.06 dB/cm at 832 nm and 633 nm. Their loss increase after aging (1 hr at 185 °C) was limited to 0.04 dB/cm at 850 nm. Waveguides realized on FR-4 (epoxyfiberglass)PCB material are demonstrated
Nd-complex-doped polymer channel waveguide laser
Laser operation at 1060 nm with slope efficiency of 0.95% and 440 ÎĽW output power for 2% outcoupling was demonstrated in Nd-complex-doped FDA/epoxy channel waveguides, in what to our knowledge is the first report of a rare-earth-ion-doped polymer waveguide laser. The threshold was 45 mW of absorbed pump power
Fabrication of Polymeric Multimode Waveguides and Devices in SU-8 Photoresist Using Selective Polymerization.
Large cross section multimode waveguides have been realized in SU-8 using selective polymerization. SU-8 is a negative photoresist, which has shown good optical properties and it is mechanically and chemically stable. The fabricated waveguides have very smooth sidewalls and exhibit low optical losses. The fabrication method is simple and potentially very cost effective. N x N and 1 x N multimode power splitters have been realized using this fabrication technology
Nd-doped polymer waveguide amplifiers
Nd3+-complex-doped polymer channel waveguide amplifiers with various lengths and Nd3+ concentrations are fabricated by a simple procedure. Internal net gain at 840–950 nm and 1064 nm is experimentally and theoretically investigated under continuous-wave excitation at 800 nm. Internal net gain in the range 865–930 nm is observed and a peak gain of 2.8 dB at 873 nm is obtained in a 1.9-cm-long waveguide with a Nd3+ concentration of 0.6x10e20 cm-3 at a launched pump power of 25 mW. The small-signal gain measured in a 1-cm-long sample with a Nd3+ concentration of 1.03x10e20 cm-3 is 2.0 dB/cm and 5.7 dB/cm at 873 nm and 1064 nm, respectively. By use of a rate-equation model, the internal net gain at these two wavelengths is calculated and the macroscopic parameter of energy-transfer upconversion as a function of Nd3+ concentration is derived. Ease of fabrication, compatibility with other materials, and low cost make such rare-earth-ion-doped polymer waveguide amplifiers suitable for providing gain in many integrated optical devices
- …