228 research outputs found

    Evaluating the Contributions of State of the Art Assessment Techniques to Predicting Memory Outcome after Unilateral Anterior Temporal Lobectomy

    Get PDF
    Purpose:Although anterior temporal lobectomy (ATL) is an effective treatment for many patients with medically refractory temporal lobe epilepsy (TLE), one risk associated with this procedure is postsurgical decline in memory. A substantial number of past studies examined factors that predict memory decline after surgery, but few have investigated multiple predictors simultaneously or considered measures that are currently in use. Methods: This study compared the relative contributions made by presurgical neuropsychological test scores, MRI-based hippocampal volumetric analysis, and Wada test results to predicting memory outcome after ATL in a group of 87 patients. Results: Logistic regression analyses indicated that noninvasive procedures (neuropsychological testing and MRI) made significant contributions to improving the prediction of memory outcome in this sample. The results from the Wada procedure did not significantly improve prediction once these other factors were considered. The only exception was in predicting memory for visual information after a delay, in which Wada results improved prediction accuracy from 78% to 81%. Conclusions: Current neuropsychological tests and MRI volumetric measures predict changes in verbal and visual memory after ATL. The relatively small change in correct classification rates when Wada memory scores are considered calls into question the benefits of using Wada test results to predict memory outcome when the results of noninvasive procedures are available

    Protein Ontology: A controlled structured network of protein entities

    Get PDF
    The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene Ontology (GO). PRO relates to UniProtKB in that PRO’s organism-specific classes of proteins encoded by a specific gene correspond to entities documented in UniProtKB entries. PRO relates to the GO in that PRO’s representations of organism-specific protein complexes are subclasses of the organism-agnostic protein complex terms in the GO Cellular Component Ontology. The past few years have seen growth and changes to the PRO, as well as new points of access to the data and new applications of PRO in immunology and proteomics. Here we describe some of these developments

    Protein Ontology: Enhancing and scaling up the representation of protein entities

    Get PDF
    The Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a post-translational modification reference. We illustrate its use in facilitating an alignment between PRO and Reactome protein entities. We also address issues of scalability, describing our first steps into the use of text mining to identify protein-related entities, the large-scale import of proteoform information from expert curated resources, and our ability to dynamically generate PRO terms. Web views for individual terms are now more informative about closely-related terms, including for example an interactive multiple sequence alignment. Finally, we describe recent improvement in semantic utility, with PRO now represented in OWL and as a SPARQL endpoint. These developments will further support the anticipated growth of PRO and facilitate discoverability of and allow aggregation of data relating to protein entities

    Literature Triage and Indexing in the Mouse Genome Informatics (MGI) Group

    Get PDF
    The Mouse Genome Informatics (MGI; "http://www.informatics.jax.org":http://www.informatics.jax.org) group is comprised of several collaborating projects including the Mouse Genome Database (MGD) Project, the Gene Expression Database (GXD) Project, the Mouse Tumor Biology (MTB) Database Project, and the Gene Ontology (GO) Project. Literature identification and collection is performed cooperatively amongst the groups.

In recent years many institutional libraries have transitioned from a focus largely on print holdings to one of electronic access to journals. This change has necessitated adaptation on the part of the MGI curatorial group. Whereas the majority of journals covered by the group used to be surveyed in paper form, those journals are now surveyed electronically. Approximately 160 journals have been identified as those most relevant to the various database groups. Each curator in the group has the responsibility of scanning several journals for articles relevant to any of the database projects. Articles chosen via this process are marked as to their potential significance for various projects. Each article is catalogued in a Master Bibliography section of the MGI database system and annotated to the database sections for which it has been identified as relevant. A secondary triage process allows curators from each group to scan the chosen articles and mark ones desired for their project if such annotation has been missed on the initial scan.

Once articles have been identified for each database project a variety of processes are implemented to further categorize and index data from those articles. For example, the Alleles and Phenotype section of the MGD database indexes each article marked for MGD and in this indexing process they identify each mouse gene and allele examined in the article. The GXD database indexing process has a different focus. In this case articles are indexed with regard to the stage of development used in the study as well as the assay technique used. In each case the indexing gives an overview of the data held in the article and assists in the more extensive curation performed in the following step of the curation process. Indexing also provides each group with valuable information used to prioritize and streamline the overall curation process.

The MGI projects are supported by NHGRI grants HG000330, HG00273, and HG003622, NICHD grant HD033745, and NCI grant CA089713

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→μνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer’s disease

    Get PDF
    Abstract: Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer's disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)-control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5-41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project
    • …
    corecore