7 research outputs found

    Combined Operational Planning of Natural Gas and Electric Power Systems: State of the Art

    Get PDF
    The growing installation and utilization of natural gas fired power plants (NGFPPs) over the last two decades has lead to increasing interactions between electricity and natural gas (NG) sectors. From 1990 to 2005, the worldwide share of NGFPPs in the power generation mix has almost doubled, from around 10% to nearly 19%; reaching in 2007, for instance, the 54% in Argentina, the 42% in Italy, the 40% in USA, and the 32% in UK (IEA, 2007; IEA, 2009a). The installation of NGFPPs has been driven by technical, economic and environmental reasons. The high thermal efficiency of combined-cycle gas turbine (CCGT) power plants and combined heat and power (CHP) units, their relatively low investment costs, short construction lead time and the prevailing low natural gas prices until 2004 have made NGFPPs more attractive than traditional coal, oil and nuclear power plants, particularly in liberalized electricity markets. Additionally, burning NG has a smaller environmental footprint and a lower carbon emission than any other fossil fuel. Under the light of all conditions previously described, there is a strong and rising interdependency between NG and electricity sectors. In this context, it is essential to include NG system models in electric power systems operation and planning. On the other hand, NG system operation and planning require, as input data, the NG demands of each NGFPPs, which accurately values can only be obtained from the electric power systems dispatch. Therefore, several approaches that address the integrated modeling of electric power and NG systems have been presented. These new approaches contrast with the current models in which both systems are considered in a decoupled manner.Fil: Rubio Barros, Ricardo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Ojeda Esteybar, Diego Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Año, Osvaldo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Vargas, Alberto. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentin

    Coordinación Integrada de sistemas eléctricos y de gas natural de mediano plazo

    No full text
    El creciente aumento mundial del precio de los combustibles líquidos derivados del petróleo ha incentivado la utilización de combustibles alternativos, como es el caso del gas natural (GN). El mismo ha adquirido un papel protagónico en los últimos 10 años, debido a su creciente uso para la generación de energía eléctrica, a través de la incorporación de unidades de generación térmica de gas natural (UGGN). Paralelamente a esto, y debido al desarrollo de nuevas tecnologías de licuefacción y regasificación de GN, transporte de gas natural licuado (GNL) y almacenamiento de GN, se han desarrollado mercados de GN regionales, esperándose para los próximos 10 años importantes expansiones de las redes y construcción de plantas de licuefacción y regasificación, constituyendo así un mercado mundial con una gran dinámica de comercialización, como el de cualquier otro comoditiy. Por lo expuesto anteriormente, hoy en día existe un amplio consenso entre los responsables políticos del sector energético en la realización de una planificación integrada y coordinada de los sistemas energéticos involucrados a fin de lograr un suministro de la energía económico, confiable y ambientalmente sostenible. Desde la perspectiva de la utilización óptima de los recursos energéticos disponibles para una región, la resolución conjunta de los sistemas eléctricos y de GN permite obtener un mejor resultado del sistema integrado que la suma de los resultados obtenidos de manera separada, redundando así en un beneficio para la región. En tal sentido se plantea la necesidad de desarrollar nuevas investigaciones que permitan el tratamiento de los sistemas energéticos en forma conjunta e integrada, optimizando así las decisiones que impactan en los aspectos económicos como así también en el riesgo asociado de los distintos actores involucrados. Este trabajo constituye una investigación dentro de las cuestiones técnicas, económicas y matemáticas relacionadas con la coordinación de los sistemas eléctricos y de gas natural y las incertidumbres más relevantes en el problema. El objetivo principal es desarrollar un marco conceptual general para enfrentar el problema de planificación integrada de sistemas eléctricos y de GN de una manera realista y práctica. Para lograr esta meta ha sido necesario llevar a cabo un conjunto de tareas que se describen en detalle en los diferentes capítulos de este trabajo. Con el apoyo de una minuciosa revisión bibliográfica, en el Capítulo II se describen las investigaciones más recientes relacionadas con el tema con sus características más relevantes, como así también los aspectos relacionados con las incertidumbres que influyen en el problema. Además se describe la influencia en la modelación de los elementos de almacenamiento energético (embalses hidroeléctricos, reservorios de GN) y el valor económico asociado a la reserva del mismo. Así también se presenta un aspecto de suma importancia referido a la integración entre sistemas, en la cual se evidencia la relación entre los precios spot de energía eléctrica y de GN. Al final se expone una breve caracterización del sistema argentino de electricidad y de GN, destacando los aspectos relevantes que se observan en éste y en la mayoría de los sistemas energéticos latinoamericanos, los cuales se tienen en cuenta en este trabajo. Con el objetivo de tener una idea acabada acerca de los principales aspectos en juego en el problema de planificación, en el Capítulo III se presentan las diferentes características y parámetros que deben tenerse en cuenta al momento del planteo inicial para la confección de un modelo de planificación de la operación integrada de sistemas energéticos en forma generalizada y los posibles resultados que pueden obtenerse de la resolución del problema propuesto. De acuerdo al análisis del problema, en este capítulo se define la formulación matemática del modelo de planificación integrado de los sistemas eléctricos y de GN con todos los elementos constitutivos, los parámetros de entrada y las incertidumbres tenidas en cuenta. Para ello se expone en un primer paso la formulación detallada del modelo determinístico de operación sistema eléctrico hidrotérmico de mediano-largo plazo, el modelo de operación del sistema de GN y modelo general planeamiento de la operación integrada de ambos sistemas energéticos. Una vez expuesta la formulación matemática propuesta, se presenta en el Capítulo IV la metodología de solución para el problema de planificación estocástica de la operación integrada de sistemas eléctricos y de GN. En este capítulo se esquematiza su aplicación a través de un diagrama de flujo donde se detallan los datos requeridos por la modelación de los sistemas eléctricos y de GN, los procedimientos considerados y los resultados obtenidos. Además se presentan los métodos de programación matemática utilizados en la resolución del modelo determinístico de planificación de la operación integrada de sistemas eléctricos y de GN, los cuales exhiben características distintivas que pueden ser aprovechados de acuerdo a la necesidad del problema. Finalmente se exhibe el método de Monte Carlo, el cual permite considerar las incertidumbres introducidas en el problema. Habiendo desarrollado el modelo matemático de planificación integrada de recursos energéticos modelados, en el Capítulo V se resuelven 3 ejemplos de estudio los cuales se desarrollan y se analizan detalladamente sus resultados, con el objetivo de poder observar distintos aspectos y cualidades relacionados con la metodología propuesta. Finalmente en el Capítulo VI se describen las conclusiones destacadas de la investigación, los aportes logrados y las futuras investigaciones relacionadas con el tema.The worldwide increase in the price of petroleum-derived liquid fuels has encouraged the use of alternative fuels such as natural gas (NG). During the last 10 years, NG has taken a leading role in the electric energy supply due to the increasing use of Natural Gas Fired Power Plants (NGFPP) for electricity generation. Simultaneously, the development of new and more efficient technologies in the liquefied natural gas (LNG) supply chain has set the basis for a globalized NG market. Major capacity expansions are expected in LNG liquefaction and regasification facilities, and also in pipeline networks for the next 10 years, which will extent the existing regional markets to a worldwide NG market with a dynamic trading, like any other commodity. There is now a broad compromise among energy policy makers on the implementation of an integrated and coordinated planning of the involved energy systems in order to achieve an efficient, equal, reliable and environmentally sustainable energy supply. From the perspective of the optimal use of available energy resources within a region, the combined optimization of electric power and NG systems enables to reach to a better result than in the case where these energy systems are considered separately, and thus obtaining a benefit for the region. In that sense, there is a need to develop new research to treat the energy systems in an integrated manner, and therefore improving the decisions that impact on the economic aspects as well as in the associated risk of the involved market players. This dissertation constitutes an exploration inside technical, economic and mathematical questions associated with the coordination in the operation of electric power and NG systems, and most relevant uncertainties linked to the problem. The main objective is to develop a complete and general framework for facing the problem of the integrated planning of electric power and NG systems in a realistic and practical manner. To achieve this goal has been necessary to carry out a group of tasks which are described in detail in the different chapters of this work. With the support of a thorough literature review, Chapter II describes the latest research related to the topic including the main characteristics and the uncertainties that have influence in the problem. It also describes the impact of modeling the energy storage facilities (hydroelectric dams, NG reservoirs) and their associated economic values. This chapter also reveals a very important aspect concerning the integration between systems, which shows the relationship between spot prices of electricity and NG. At the end, there is a brief characterization of the Argentine electric power and NG systems, highlighting the main features observed in these systems and in most Latin American energy systems, which are considered in this work. The first part of chapter III presents a detailed analysis and description of the characteristics and parameters which define the general modeling of the longmedium term operational planning of integrated energy systems. The main objectives and the required outcomes that result from solving this problem are also analyzed. According to these bases, the mathematical formulation of the problem is presented including a description of the input data and the adopted modeling to deal with their uncertainties. The complete formulation of the problem results from merging the deterministic long-medium term deterministic operation model of hydrothermal power system and the analogous for the NG system into a single and integrated model of both energy systems. Chapter IV presents the solution method proposed to handle the stochastic operation planning problem of integrated electric power and NG systems. This chapter outlines their application through a flow chart which details the required information on the electric power and NG systems, the proposed procedures and the obtained results. In addition, this chapter presents the mathematical programming methods used to solve the deterministic operation planning model of electric power and NG systems, showing their specific features that can be used according to the problem requirements. Finally, it displays the Monte Carlo method, which allows to deal with the uncertainties introduced in the problem. Chapter V shows the application of the proposed methodology to three case studies which cover different problem size and complexity. The diversity of the case studies allows to analyze the different features of the proposed modeling and solution techniques. A summary of the results and some concluding remarks close this chapter. Finally, chapter VI describes the main conclusions obtained from this research, the contributions made to state of the art in the operational planning of energy systems and some future research related to the topic.Fil: Ojeda Esteybar, Diego Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería; Argentin

    Stochastic Unit Commitment & Optimal Allocation of Reserves: A Hybrid Decomposition Approach

    No full text
    The unit commitment is still a widely studied problem, especially when more renewable energy of stochastic character is being added to power systems. This paper proposes a model for weekly planning of systems involving hydro, wind, and thermal energy under a stochastic perspective. The proposed model follows the endogenous reserve determination criterion to achieve a simultaneous optimization of energy and reserves considering wind uncertainty, forced outages of equipment, a dc Flow model of the network, and cascaded head sensitive hydro systems, among others. The paper also develops a practical solution methodology based on outer approximation and benders decomposition. Testing has been conducted over four systems, and computational results demonstrate that the proposed model and solution are useful and effective.Fil: Lopez Salgado, Carlos Josue. Universidad Tecnológica Centroamericana; HondurasFil: Año, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Ojeda Esteybar, Diego Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentin

    Energy and reserve co-optimization within the Short Term Hydrothermal Scheduling under uncertainty: A proposed model and decomposition strategy

    No full text
    Procurement of spare capacity is an essential mechanism in electric power systems. Through it the system is able to endure the disturbances induced by different sources of uncertainty, which also impact the system's operational cost. This paper introduces an optimization model for the Short Term Hydrothermal Scheduling that performs a co-optimization of energy and reserves for tertiary regulation, considering hydrology uncertainty and forced outages of generation units and transmission lines. The formulation presented is extended to consider intermittent stochastic generation from wind farms or hydro plants without storage capability. This work also proposes a decomposition scheme to deal with the resulting stochastic and large scale optimization problem. The proposed strategy relies on a coordinated application of two instances of the Bender's decomposition principle. By means of two study cases it will be demonstrated the effectiveness of the proposed model and the performance of the methodology.Fil: Lopez Salgado, Carlos Josue. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Año, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Ojeda Esteybar, Diego Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentin

    Integrated operational planning of hydrothermal power and natural gas systems with large scale storages

    No full text
    Abstract The growing installation of natural gas fired power plants has increased the integration of natural gas and electricity sectors. This has driven the need investigate the interactions among them and to optimize energy resources management from a centralized planning perspective. Thus, a combined modeling of the reservoirs involved in electric power and gas systems and their locations on both networks are essential features to be considered in the operational planning of energy resources. This paper presents a modeling and optimization approach to the operational planning of electric power and natural gas systems, taking into account different energy storage facilities, such as water reservoirs, natural gas storages and line packs of pipelines. The proposed model takes advantage of captures both energy systems synergy and their associated networks. This approach identifies the interactions between the energy storage facilities and their economic impact over their optimal scheduling. The results show the benefits of an integrated operational planning of electric power and natural gas systems, the close interdependency between the energy resources stored in both systems, and the effects of a combined scheduling

    Stochastic daily hydrothermal scheduling based on decomposition and parallelization

    No full text
    This paper studies the stochastic short term hydrothermal scheduling of systems that have a significant contribution from controllable reservoirs, focusing on the reservoirs´ operation policy when non-linearity and deployment of supplementary reserves at the real operation stage are modeled. Wind power and forced outages of power plants and transmission lines are treated as stochastic variables, and the total reserve is an endogenous variable to the model. The problem includes cascaded hydro systems with head-sensitive plants, a DC power flow representation with nonlinear transmission losses, and four types of operating reserves; and it aims at pre-positioning generation and reserves schedules in the light of the expected deployment of operating reserves throughout the day. To solve the optimization problem, a hybrid scheme elaborated from outer approximation and Benders decomposition is applied. The proposed solution method is tested in a real size system, where its effectiveness, in terms of computational peed and accuracy, is demonstrated.Fil: López Salgado, Carlos Josue. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Helseth, Arild. Norwegian University Of Science And Technology. Faculty Of Information Technology And Electrical Engineering.; NoruegaFil: Ojeda Esteybar, Diego Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Año, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentin
    corecore