9 research outputs found
Associations Between Lumbar Vertebral Bone Marrow and Paraspinal Muscle Fat Compositions—An Investigation by Chemical Shift Encoding-Based Water-Fat MRI
Purpose: Advanced magnetic resonance imaging (MRI) methods enable non-invasive quantification of body fat situated in different compartments. At the level of the lumbar spine, the paraspinal musculature is the compartment spatially and functionally closely related to the vertebral column, and both vertebral bone marrow fat (BMF) and paraspinal musculature fat contents have independently shown to be altered in various metabolic and degenerative diseases. However, despite their close relationships, potential correlations between fat compositions of these compartments remain largely unclear.Materials and Methods: Thirty-nine female subjects (38.5% premenopausal women, 29.9 ± 7.1 years; 61.5% postmenopausal women, 63.2 ± 6.3 years) underwent MRI at 3T of the lumbar spine using axially- and sagittally-prescribed gradient echo sequences for chemical shift encoding-based water-fat separation. The erector spinae muscles and vertebral bodies of L1–L5 were segmented to determine the proton density fat fraction (PDFF) of the paraspinal and vertebral bone marrow compartments. Correlations were calculated between the PDFF of the paraspinal muscle and bone marrow compartments.Results: The average PDFF of the paraspinal muscle and bone marrow compartments were significantly lower in premenopausal women when compared to postmenopausal women (11.6 ± 2.9% vs. 24.6 ± 7.1% & 28.8 ± 8.3% vs. 47.2 ± 8.5%; p < 0.001 for both comparisons). In premenopausal women, no significant correlation was found between the PDFF of the erector spinae muscles and the PDFF of the bone marrow of lumbar vertebral bodies (p = 0.907). In contrast, a significant correlation was shown in postmenopausal women (r = 0.457, p = 0.025). Significance was preserved after inclusion of age and body mass index (BMI) as control variables (r = 0.472, p = 0.027).Conclusion: This study revealed significant correlations between the PDFF of paraspinal and vertebral bone marrow compartments in postmenopausal women. The PDFF of the paraspinal and vertebral bone marrow compartments and their correlations might potentially serve as biomarkers; however, future studies including more subjects are required to evaluate distinct clinical value and reliability. Future studies should also follow up our findings in patients suffering from metabolic and degenerative diseases to clarify how these correlations change in the course of such diseases
Anatomical Variation of Age-Related Changes in Vertebral Bone Marrow Composition Using Chemical Shift Encoding-Based Water–Fat Magnetic Resonance Imaging
Assessment of vertebral bone marrow composition has been proposed as imaging biomarker for osteoporosis, hematopoietic, and metabolic disorders. We investigated the anatomical variation of age-related changes of vertebral proton density fat fraction (PDFF) using chemical shift encoding-based water–fat magnetic resonance imaging (MRI). 156 healthy subjects were recruited (age range 20–29 years: 12/30 males/females; 30–39: 15/9; 40–49: 4/14; 50–59: 9/27; 60–69: 5/19; 70–79: 4/8). An eight-echo 3D spoiled gradient-echo sequence at 3T MRI was used for chemical shift-encoding based water–fat separation at the lumbar spine. Vertebral bodies of L1–L4 were manually segmented to extract PDFF values at each vertebral level. PDFF averaged over L1–L4 was significantly (p < 0.05) higher in males than females in the twenties (32.0 ± 8.0 vs. 27.2 ± 6.0%) and thirties (35.3 ± 6.7 vs. 27.3 ± 6.2%). With increasing age, females showed an accelerated fatty conversion of the bone marrow compared to men with no significant (p > 0.05) mean PDFF differences in the forties (32.4 ± 8.4 vs. 34.5 ± 6.8%) and fifties (42.0 ± 6.1 vs. 40.5 ± 9.7%). The accelerated conversion process continued resulting in greater mean PDFF values in females than males in the sixties (40.2 ± 6.9 vs. 48.8 ± 7.7%; p = 0.033) and seventies (43.9 ± 7.6 vs. 50.5 ± 8.2%; p = 0.208), though the latter did not reach statistical significance. Relative age-related PDFF change from the twenties to the seventies increased from 16.7% (L1) to 51.4% (L4) in males and 76.8% (L1) to 85.7% (L4) in females. An accelerated fatty conversion of bone marrow was observed in females with increasing age particularly evident after menopause. Relative age-related PDFF changes showed an anatomical variation with most pronounced changes at lower lumbar vertebral levels in both sexes
Lumbar muscle and vertebral bodies segmentation of chemical shift encoding-based water-fat MRI: the reference database MyoSegmenTUM spine
Abstract Background Magnetic resonance imaging (MRI) is the modality of choice for diagnosing and monitoring muscular tissue pathologies and bone marrow alterations in the context of lower back pain, neuromuscular diseases and osteoporosis. Chemical shift encoding-based water-fat MRI allows for reliable determination of proton density fat fraction (PDFF) of the muscle and bone marrow. Prior to quantitative data extraction, segmentation of the examined structures is needed. Performed manually, the segmentation process is time consuming and therefore limiting the clinical applicability. Thus, the development of automated segmentation algorithms is an ongoing research focus. Construction and content This database provides ground truth data which may help to develop and test automatic lumbar muscle and vertebra segmentation algorithms. Lumbar muscle groups and vertebral bodies (L1 to L5) were manually segmented in chemical shift encoding-based water-fat MRI and made publically available in the database MyoSegmenTUM. The database consists of water, fat and PDFF images with corresponding segmentation masks for lumbar muscle groups (right/left erector spinae and psoas muscles, respectively) and lumbar vertebral bodies 1–5 of 54 healthy Caucasian subjects. The database is freely accessible online at https://osf.io/3j54b/?view_only=f5089274d4a449cda2fef1d2df0ecc56. Conclusion A development and testing of segmentation algorithms based on this database may allow the use of quantitative MRI in clinical routine
From first to second wave: Follow-up of the prospective COVID-19 cohort (KoCo19) in Munich (Germany).
BACKGROUND: In the 2nd year of the COVID-19 pandemic, knowledge about the dynamics of the infection in the general population is still limited. Such information is essential for health planners, as many of those infected show no or only mild symptoms and thus, escape the surveillance system. We therefore aimed to describe the course of the pandemic in the Munich general population living in private households from April 2020 to January 2021. METHODS: The KoCo19 baseline study took place from April to June 2020 including 5313 participants (age 14 years and above). From November 2020 to January 2021, we could again measure SARS-CoV-2 antibody status in 4433 of the baseline participants (response 83%). Participants were offered a self-sampling kit to take a capillary blood sample (dry blood spot; DBS). Blood was analysed using the Elecsys® Anti-SARS-CoV-2 assay (Roche). Questionnaire information on socio-demographics and potential risk factors assessed at baseline was available for all participants. In addition, follow-up information on health-risk taking behaviour and number of personal contacts outside the household (N = 2768) as well as leisure time activities (N = 1263) were collected in summer 2020. RESULTS: Weighted and adjusted (for specificity and sensitivity) SARS-CoV-2 sero-prevalence at follow-up was 3.6% (95% CI 2.9-4.3%) as compared to 1.8% (95% CI 1.3-3.4%) at baseline. 91% of those tested positive at baseline were also antibody-positive at follow-up. While sero-prevalence increased from early November 2020 to January 2021, no indication of geospatial clustering across the city of Munich was found, although cases clustered within households. Taking baseline result and time to follow-up into account, men and participants in the age group 20-34 years were at the highest risk of sero-positivity. In the sensitivity analyses, differences in health-risk taking behaviour, number of personal contacts and leisure time activities partly explained these differences. CONCLUSION: The number of citizens in Munich with SARS-CoV-2 antibodies was still below 5% during the 2nd wave of the pandemic. Antibodies remained present in the majority of SARS-CoV-2 sero-positive baseline participants. Besides age and sex, potentially confounded by differences in behaviour, no major risk factors could be identified. Non-pharmaceutical public health measures are thus still important
Spatially resolved qualified sewage spot sampling to track SARS-CoV-2 dynamics in Munich - One year of experience
Rubio-Acero R, Beyerl J, Muenchhoff M, et al. Spatially resolved qualified sewage spot sampling to track SARS-CoV-2 dynamics in Munich - One year of experience. Science of The Total Environment. 2021;797: 149031
The representative COVID-19 cohort Munich (KoCo19): from the beginning of the pandemic to the Delta virus variant
Le Gleut R, Plank M, PĂĽtz P, et al. The representative COVID-19 cohort Munich (KoCo19): from the beginning of the pandemic to the Delta virus variant. BMC Infectious Diseases. 2023;23(1): 466.**Background**
Population-based serological studies allow to estimate prevalence of SARS-CoV-2 infections despite a substantial number of mild or asymptomatic disease courses. This became even more relevant for decision making after vaccination started. The KoCo19 cohort tracks the pandemic progress in the Munich general population for over two years, setting it apart in Europe.
**Methods**
Recruitment occurred during the initial pandemic wave, including 5313 participants above 13 years from private households in Munich. Four follow-ups were held at crucial times of the pandemic, with response rates of at least 70%. Participants filled questionnaires on socio-demographics and potential risk factors of infection. From Follow-up 2, information on SARS-CoV-2 vaccination was added. SARS-CoV-2 antibody status was measured using the Roche Elecsys® Anti-SARS-CoV-2 anti-N assay (indicating previous infection) and the Roche Elecsys® Anti-SARS-CoV-2 anti-S assay (indicating previous infection and/or vaccination). This allowed us to distinguish between sources of acquired antibodies.
**Results**
The SARS-CoV-2 estimated cumulative sero-prevalence increased from 1.6% (1.1-2.1%) in May 2020 to 14.5% (12.7-16.2%) in November 2021. Underreporting with respect to official numbers fluctuated with testing policies and capacities, becoming a factor of more than two during the second half of 2021. Simultaneously, the vaccination campaign against the SARS-CoV-2 virus increased the percentage of the Munich population having antibodies, with 86.8% (85.5-87.9%) having developed anti-S and/or anti-N in November 2021. Incidence rates for infections after (BTI) and without previous vaccination (INS) differed (ratio INS/BTI of 2.1, 0.7-3.6). However, the prevalence of infections was higher in the non-vaccinated population than in the vaccinated one. Considering the whole follow-up time, being born outside Germany, working in a high-risk job and living area per inhabitant were identified as risk factors for infection, while other socio-demographic and health-related variables were not. Although we obtained significant within-household clustering of SARS-CoV-2 cases, no further geospatial clustering was found.
**Conclusions**
Vaccination increased the coverage of the Munich population presenting SARS-CoV-2 antibodies, but breakthrough infections contribute to community spread. As underreporting stays relevant over time, infections can go undetected, so non-pharmaceutical measures are crucial, particularly for highly contagious strains like Omicron