492 research outputs found

    Can a charged ring levitate a neutral, polarizable object? Can Earnshaw's Theorem be extended to such objects?

    Get PDF
    Stable electrostatic levitation and trapping of a neutral, polarizable object by a charged ring is shown to be theoretically impossible. Earnshaw's Theorem precludes the existence of such a stable, neutral particle trap.Comment: 11 pages, 1 figur

    Doppler cooling and trapping on forbidden transitions

    Get PDF
    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of ^40Ca atoms has been cooled and trapped to a temperature as low as 6 \mu K by operating a magneto-optical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method more than 10% of pre-cooled atoms from a standard magneto-optical trap have been transferred to the ultracold trap. Monte-Carlo simulations of the cooling process are in good agreement with the experiments

    Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit

    Get PDF
    We present a cooling method that should be generally applicable to atoms with narrow optical transitions. This technique uses velocity-selective pulses to drive atoms towards a zero-velocity dark state and then quenches the excited state to increase the cooling rate. We demonstrate this technique of quenched narrow-line cooling by reducing the 1-D temperature of a sample of neutral 40Ca atoms. We velocity select and cool with the 1S0(4s2) to 3P1(4s4p) 657 nm intercombination line and quench with the 3P1(4s4p) to 1S0(4s5s) intercombination line at 553 nm, which increases the cooling rate eight-fold. Limited only by available quenching laser power, we have transferred 18 % of the atoms from our initial 2 mK velocity distribution and achieved temperatures as low as 4 microK, corresponding to a vrms of 2.8 cm/s or 2 recoils at 657 nm. This cooling technique, which is closely related to Raman cooling, can be extended to three dimensions.Comment: 5 pages, 4 figures; Submitted to PRA Rapid Communication

    The theory of heating of the quantum ground state of trapped ions

    Full text link
    Using a displacement operator formalism, I analyse the depopulation of the vibrational ground state of trapped ions. Two heating times, one characterizing short time behaviour, the other long time behaviour are found. The short time behaviour is analyzed both for single and multiple ions, and a formula for the relative heating rates of different modes is derived. The possibility of correction of heating via the quantum Zeno effect, and the exploitation of the suppression of heating of higher modes to reduce errors in quantum computation is considered.Comment: 9 pages, 2 figure

    Laser Cooling of two trapped ions: Sideband cooling beyond the Lamb-Dicke limit

    Get PDF
    We study laser cooling of two ions that are trapped in a harmonic potential and interact by Coulomb repulsion. Sideband cooling in the Lamb-Dicke regime is shown to work analogously to sideband cooling of a single ion. Outside the Lamb-Dicke regime, the incommensurable frequencies of the two vibrational modes result in a quasi-continuous energy spectrum that significantly alters the cooling dynamics. The cooling time decreases nonlinearly with the linewidth of the cooling transition, and the effect of trapping states which may slow down the cooling is considerably reduced. We show that cooling to the ground state is possible also outside the Lamb-Dicke regime. We develop the model and use Quantum Monte Carlo calculations for specific examples. We show that a rate equation treatment is a good approximation in all cases.Comment: 13 pages, 10 figure

    Experimental demonstration of ground state laser cooling with electromagnetically induced transparency

    Get PDF
    Ground state laser cooling of a single trapped ion is achieved using a technique which tailors the absorption profile for the cooling laser by exploiting electromagnetically induced transparency in the Zeeman structure of a dipole transition. This new method is robust, easy to implement and proves particularly useful for cooling several motional degrees of freedom simultaneously, which is of great practical importance for the implementation of quantum logic schemes with trapped ions.Comment: 4 pages, 4 figure

    Single photon generation by pulsed excitation of a single dipole

    Get PDF
    The fluorescence of a single dipole excited by an intense light pulse can lead to the generation of another light pulse containing a single photon. The influence of the duration and energy of the excitation pulse on the number of photons in the fluorescence pulse is studied. The case of a two-level dipole with strongly damped coherences is considered. The presence of a metastable state leading to shelving is also investigated.Comment: 17 pages, 4 figures, submitted to PR

    Quantum state engineering on an optical transition and decoherence in a Paul trap

    Get PDF
    A single Ca+ ion in a Paul trap has been cooled to the ground state of vibration with up to 99.9% probability. Starting from this Fock state |n=0> we have demonstrated coherent quantum state manipulation on an optical transition. Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar number of Rabi oscillations after preparation of the ion in the |n=1> Fock state. The coherence of optical state manipulation is only limited by laser and ambient magnetic field fluctuations. Motional heating has been measured to be as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure

    Dark resonances as a probe for the motional state of a single ion

    Full text link
    Single, rf-trapped ions find various applications ranging from metrology to quantum computation. High-resolution interrogation of an extremely weak transition under best observation conditions requires an ion almost at rest. To avoid line-broadening effects such as the second order Doppler effect or rf heating in the absence of laser cooling, excess micromotion has to be eliminated as far as possible. In this work the motional state of a confined three-level ion is probed, taking advantage of the high sensitivity of observed dark resonances to the trapped ion's velocity. Excess micromotion is controlled by monitoring the dark resonance contrast with varying laser beam geometry. The influence of different parameters such as the cooling laser intensity has been investigated experimentally and numerically

    Multidisciplinary Design Optimization of an Extreme Aspect Ration HALE UAV

    Get PDF
    Development of High Altitude Long Endurance (HALE) aircraft systems is part of a vision for a low cost communications/surveillance capability. Applications of a multi payload aircraft operating for extended periods at stratospheric altitudes span military and civil genres and support battlefield operations, communications, atmospheric or agricultural monitoring, surveillance, and other disciplines that may currently require satellite-based infrastructure. The central goal of this research was the development of a multidisciplinary tool for analysis, design, and optimization of HALE UAVs, facilitating the study of a novel configuration concept. Applying design ideas stemming from a unique WWII-era project, a pinned wing HALE aircraft would employ self-supporting wing segments assembled into one overall flying wing. When wrapped in an optimization routine, the integrated design environment shows potential for a 17.3% reduction in weight when wing thickness to chord ratio, aspect ratio, wing loading, and power to weight ratio are included as optimizer-controlled design variables. Investigation of applying the sustained day/night mission requirement and improved technology factors to the design shows that there are potential benefits associated with a segmented or pinned wing. As expected, wing structural weight is reduced, but benefits diminish as higher numbers of wing segments are considered. For an aircraft consisting of six wing segments, a maximum of 14.2% reduction in gross weight over an advanced technology optimal baseline is predicted
    • …
    corecore