532 research outputs found
Somatostatin agonist pasireotide inhibits exercise stimulated growth in the male Siberian hamster (Phodopus sungorus)
R.Dumbell was supported by a University of Aberdeen PhD studentship and a research visit grant awarded by the British Society of Neuroendocrinology. Further support was provided by the Scottish Government Rural and Environment Science and Analytical Services Division (Barrett and the German Research Foundation (DFG; STE 331/8-1; Steinlechner lab). We are grateful for technical assistance from Dana Wilson at RINH and Siegried Hiliken at UVMH, and thank Dr Claus-Dieter Mayer of Biomathematics & Statistics Scotland for valuable advice on statistical analysis.Peer reviewedPostprin
Readiness of Quantum Optimization Machines for Industrial Applications
There have been multiple attempts to demonstrate that quantum annealing and,
in particular, quantum annealing on quantum annealing machines, has the
potential to outperform current classical optimization algorithms implemented
on CMOS technologies. The benchmarking of these devices has been controversial.
Initially, random spin-glass problems were used, however, these were quickly
shown to be not well suited to detect any quantum speedup. Subsequently,
benchmarking shifted to carefully crafted synthetic problems designed to
highlight the quantum nature of the hardware while (often) ensuring that
classical optimization techniques do not perform well on them. Even worse, to
date a true sign of improved scaling with the number of problem variables
remains elusive when compared to classical optimization techniques. Here, we
analyze the readiness of quantum annealing machines for real-world application
problems. These are typically not random and have an underlying structure that
is hard to capture in synthetic benchmarks, thus posing unexpected challenges
for optimization techniques, both classical and quantum alike. We present a
comprehensive computational scaling analysis of fault diagnosis in digital
circuits, considering architectures beyond D-wave quantum annealers. We find
that the instances generated from real data in multiplier circuits are harder
than other representative random spin-glass benchmarks with a comparable number
of variables. Although our results show that transverse-field quantum annealing
is outperformed by state-of-the-art classical optimization algorithms, these
benchmark instances are hard and small in the size of the input, therefore
representing the first industrial application ideally suited for testing
near-term quantum annealers and other quantum algorithmic strategies for
optimization problems.Comment: 22 pages, 12 figures. Content updated according to Phys. Rev. Applied
versio
Stroboscopic Laser Diagnostics for Detection of Ordering in One-Dimensional Ion beam
A novel diagnostic method for detecting ordering in one-dimensional ion beams
is presented. The ions are excited by a pulsed laser at two different positions
along the beam and fluorescence is observed by a group of four
photomultipliers. Correlation in fluorescence signals is firm indication that
the ion beam has an ordered structure.Comment: 7 pages, REVTEX, fig3 uuencoded, figs 1-2 available upon request from
[email protected], to appear in Phys. Rev.
The Effect of absorbing sites on the one-dimensional cellular automaton traffic flow with open boundaries
The effect of the absorbing sites with an absorbing rate , in both
one absorbing site (one way out) and two absorbing sites (two ways out) in a
road, on the traffic flow phase transition is investigated using numerical
simulations in the one-dimensional cellular automaton traffic flow model with
open boundaries using parallel dynamics.In the case of one way out, there exist
a critical position of the way out below which the current is
constant for and decreases when increasing
for . When the way out is located at a
position greater than , the current increases with for
and becomes constant for any value of
greater than . While, when the way out is located at any position
between and (), the current increases,
for , with and becomes constant for
and decreases with for
. In the later case the density undergoes two
successive first order transitions; from high density to maximal current phase
at and from intermediate density to the low one at
. In the case of two ways out located respectively
at the positions and , the two successive transitions occur
only when the distance - separating the two ways is smaller than
a critical distance . Phase diagrams in the (),
() and () planes are established. It is found
that the transitions between Free traffic, Congested traffic and maximal
current phase are first order
Analytic results for particles with interaction in two dimensions and an external magnetic field
The -dimensional quantum problem of particles (e.g. electrons) with
interaction in a two-dimensional parabolic potential
(e.g. quantum dot) and magnetic field , reduces exactly to solving a
-dimensional problem which is independent of and . An
exact, infinite set of relative mode excitations are obtained for any . The
problem reduces to that of a ficticious particle in a two-dimensional,
non-linear potential of strength , subject to a ficticious magnetic
field , the relative angular momentum.Comment: To appear in Physical Review Letters (in press). RevTeX file. Two
figures available from [email protected] or
[email protected]
The theory of heating of the quantum ground state of trapped ions
Using a displacement operator formalism, I analyse the depopulation of the
vibrational ground state of trapped ions. Two heating times, one characterizing
short time behaviour, the other long time behaviour are found. The short time
behaviour is analyzed both for single and multiple ions, and a formula for the
relative heating rates of different modes is derived. The possibility of
correction of heating via the quantum Zeno effect, and the exploitation of the
suppression of heating of higher modes to reduce errors in quantum computation
is considered.Comment: 9 pages, 2 figure
Laser Cooling of two trapped ions: Sideband cooling beyond the Lamb-Dicke limit
We study laser cooling of two ions that are trapped in a harmonic potential
and interact by Coulomb repulsion. Sideband cooling in the Lamb-Dicke regime is
shown to work analogously to sideband cooling of a single ion. Outside the
Lamb-Dicke regime, the incommensurable frequencies of the two vibrational modes
result in a quasi-continuous energy spectrum that significantly alters the
cooling dynamics. The cooling time decreases nonlinearly with the linewidth of
the cooling transition, and the effect of trapping states which may slow down
the cooling is considerably reduced. We show that cooling to the ground state
is possible also outside the Lamb-Dicke regime. We develop the model and use
Quantum Monte Carlo calculations for specific examples. We show that a rate
equation treatment is a good approximation in all cases.Comment: 13 pages, 10 figure
Preserved functional autonomic phenotype in adult mice overexpressing moderate levels of human alpha-synuclein in oligodendrocytes
Mice overexpressing human alpha-synuclein in oligodendrocytes (MBP1-alpha-syn) recapitulate some key functional and neuropathological features of multiple system atrophy (MSA). Whether or not these mice develop severe autonomic failure, which is a key feature of human MSA, remains unknown. We explored cardiovascular autonomic regulation using long-term blood pressure (BP) radiotelemetry and pharmacological testing. We instrumented 12 MBP1-alpha-syn mice and 11 wild-type mice aged 9 months for radiotelemetry. Animals were tested with atropine, metoprolol, clonidine, and trimethaphan at 9 and 12 months age. We applied spectral and cross-spectral analysis to assess heart rate (HR) and BP variability. At 9 months of age daytime BP (transgenic: 101 +/- 2 vs. wild type: 99 +/- 2 mmHg) and HR (497 +/- 11 vs. 505 +/- 16 beats/min) were similar. Circadian BP and HR rhythms were maintained. Nighttime BP (109 +/- 2 vs. 108 +/- 2 mmHg) and HR (575 +/- 15 vs. 569 +/- 14 beats/min), mean arterial BP responses to trimethaphan (-21 +/- 8 vs. -10 +/- 5 mmHg, P = 0.240) and to clonidine (-8 +/- 3 vs. -5 +/- 2 mmHg, P = 0.314) were similar. HR responses to atropine (+159 +/- 24 vs. +146 +/- 22 beats/min), and to clonidine (-188 +/- 21 vs. -163 +/- 33 beats/min) did not differ between strains. Baroreflex sensitivity (4 +/- 1 vs. 4 +/- 1 msec/mmHg) and HR variability (total power, 84 +/- 17 vs. 65 +/- 21 msec(2)) were similar under resting conditions and during pharmacological testing. Repeated measurements at 12 months of age provided similar results. In mice, moderate overexpression of human alpha-synuclein in oligodendrocytes is not sufficient to induce overt autonomic failure. Additional mechanisms may be required to express the autonomic failure phenotype including higher levels of expression or more advanced age
Photon Statistics; Nonlinear Spectroscopy of Single Quantum Systems
A unified description of multitime correlation functions, nonlinear response
functions, and quantum measurements is developed using a common generating
function which allows a direct comparison of their information content. A
general formal expression for photon counting statistics from single quantum
objects is derived in terms of Liouville space correlation functions of the
material system by making a single assumption that spontaneous emission is
described by a master equation
Transition from antibunching to bunching for two dipole-interacting atoms
It is known that there is a transition from photon antibunching to bunching
in the resonance fluorescence of a driven system of two two-level atoms with
dipole-dipole interaction when the atomic distance decreases and the other
parameters are kept fixed. We give a simple explanation for the underlying
mechanism which in principle can also be applied to other systems. PACS numbers
42.50.Ar, 42.50FxComment: Submitted to Phys. Rev. A; 15 pages Latex + 4 figure
- …