5 research outputs found

    Scale-dependent plant diversity in Palaearctic grasslands: a comparative overview

    Get PDF
    Here we present an extensive overview of plant diversity values in Palaearctic grasslands for seven standard grain sizes from 0.0001 to 100 m². The data originate from 20 studies, including the Field Workshops of the Eurasian Dry Grassland Group (EDGG), ranging geographically from Spain in the west to Siberia in the east, from Sicily in the south to Estonia in the north and from the sea coast up to 3100 m a.s.l. The majority of data is from dry grasslands (Festuco-Brometea, Koelerio-Corynephoretea, Cleistogenetea squarrosae), but there are also some mesic, wet, saline, acidic, alpine and Mediterranean grasslands included. Among others, we compiled data from 1795 1-m², 1109 10-m² and 338 100-m² plots. In all cases we present mean, minimum and maximum richness for the seven grain sizes, plus, in cases where also terricolous bryophytes and lichens had been recorded, the same values for total “plant” species richness, non-vascular plant species richness and fraction of non-vascular plants. The maximum richness values were 82, 101 and 134 for all “plants”, and 79, 98 and 127 vascular plants at grain sizes of 1 m², 10 m² and 100 m², respectively (all in Transylvania, Romania). Our overview comprises new, hitherto unpublished world records of vascular plant species richness at the scales of 0.0001 m² (9) and 0.001 m² (19, both shoot presence), from meso-xeric, basiphilous grasslands in Navarre, Spain, which is much higher than the previously known maxima. The highest values of non-vascular plant richness at 1 m², 10 m² and 100 m², respectively, were 49, 64 and 64, respectively (all in Sedo-Scleranthenea communities of Öland, Sweden, and Saaremaa, Estonia). In general, the dry, alpine and Mediterranean grasslands were much richer than the studied mesic, wet or saline grasslands at any spatial scale. The presented set of mean, minimum and maximum values and their metadata is publically available and will be continuously updated. These data can serve as a reference of “normal” richness, both in fundamental and applied research. To facilitate the application, we provide an easy formula based on the power-law species-area relationship that allows the estimation of richness values at intermediate grain sizes not included in our dataset. In conclusion, our data emphasise the role of Palaearctic grasslands as global hotspot of small-scale vascular plant diversity, while at the same time highlighting that in some grassland types also the bryophyte and lichen diversity can be extraordinarily high

    Post-Soviet recovery of grassland vegetation on abandoned fields in the forest steppe zone of Western Siberia

    No full text
    Following the collapse of the Soviet Union in 1991 around 45 million hectares of arable land became abandoned across Russia. Our study focused on the recovery potential and conservation value of grassland vegetation on ex-arable land in the Tyumen region of the Western Siberian grain belt. We compared ex-arable grasslands of different successional stages with ancient grasslands as reference for the final stage of succession along a climatic gradient from the pre-taiga to the forest steppe zone. Plant community composition and species richness of ex-arable land clearly developed towards reference sites over time, but even after 24 years of abandonment, the grassland vegetation had not totally recovered. The c-diversity of vascular plants was slightly higher on ex-arable land than in ancient grasslands but the mean a-diversity was still moderately lower. A significant proportion of the vegetation of ex-arable land still consisted of ruderal and mesic grassland species and the number and cover of meadow-steppe species was significantly lower than in ancient grasslands. Grazing and time since abandonment positively affected the reestablishment of target grassland species, whereas it was negatively affected by the cover of grasses. In contrast to ex-arable land, the conservation value of arable land is only modest. Therefore, future intensification of land use is most likely less harmful if directed to existing arable land. Re-cultivation of ex-arable land and grassland improvement operations such as seeding of competitive grass species are major threats for the biodiversity of secondary grasslands on ex-arable land in the forest steppe zone of Western Siberia

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    No full text
    corecore