21 research outputs found

    Nuclear phospholipid signaling: phosphatidylinositol-specific phospholipase C and phosphoinositide 3-kinase

    Get PDF
    Over the last 20 years, numerous studies have demonstrated the existence of nuclear phosphoinositide signaling distinct from the one at the plasma membrane. The activation of phosphatidylinositol-specific phospholipase C (PI-PLC) and phosphoinositide 3-kinase (PI3K), the generation of diacylglycerol, and the accumulation of the 3-phosphorylated phosphoinositides have been documented in the nuclei of different cell types. In this review, we summarize some recent studies of the subnuclear localization, mechanisms of activation, and the possible physiological roles of the nuclear PI-PLC and PI-3 kinases in the regulation of cell cycle, survival, and differentiation

    IL-4 enhances survival of in vitro-differentiated mouse basophils through transcription-independent signaling downstream of PI3K

    Get PDF
    Interleukin 4 (IL-4) is a critical cytokine implicated with T2 immune reactions, which are linked to pathologic conditions of allergic diseases. In that context, the initiation of T2 responses can critically depend on early basophil-derived IL-4 to activate T-cell responses, which then amplify IL-4 secretion. As a pleiotropic cytokine, IL-4 acts on a broad variety of hematopoietic and non-hematopoietic cells. However, the effect of IL-4 on basophils themselves, which are emerging as relevant players in allergic as well as autoimmune diseases, was only scarcely addressed so far. Here we used in vitro-differentiated mouse basophils to investigate the direct effects of IL-4 on cellular viability and surface expression of the high-affinity receptor for IgE, FcεRI. We observed that IL-4 elicits pronounced pro-survival signaling in basophils, delaying spontaneous apoptosis in vitro to a degree comparable to the known pro-survival effects of IL-3. Our data indicate that IL-4-mediated survival depends on PI3K/AKT signaling and-in contrast to IL-3-seems to be largely independent of transcriptional changes but effectuated by post-translational mechanisms affecting BCL-2 family members among others. Additionally, we found that IL-4 signaling has a stabilizing effect on the surface expression levels of the critical basophil activation receptor FcεRI. In summary, our findings indicate an important regulatory role of IL-4 on in vitro-differentiated mouse basophils enhancing their survival and stabilizing FcεRI receptor expression through PI3K-dependent signaling. A better understanding of the regulation of basophil survival will help to define promising targets and consequently treatment strategies in basophil-driven diseases

    BH3 mimetics efficiently induce apoptosis in mouse basophils and mast cells

    Get PDF
    Basophil granulocytes and mast cells are recognized for their roles in immunity and are central effectors of diverse immunological disorders. Despite their similarities, there is emerging evidence for non-redundant roles of the circulating yet scarce basophils and tissue-resident mast cells, respectively. Because of their importance in allergic pathogenesis, specific induction of apoptosis in basophils and mast cells may represent an interesting novel treatment strategy. The pro-inflammatory cytokine interleukin-3 serves as a key factor for basophil and mouse mast cell survival. Interleukin-3 increases the expression of anti-apoptotic BCL-2 family members, such as BCL-2, BCL-XL or MCL-1; however, little is known how strongly these individual proteins contribute to basophil survival. Here, we were applying small molecule inhibitors called BH3 mimetics, some of which show remarkable success in cancer treatments, to neutralize the function of anti-apoptotic BCL-2 family members. We observed that expression levels of anti-apoptotic BCL-2 proteins do not necessarily correlate with their respective importance for basophil survival. Whereas naive in vitro-differentiated mouse basophils efficiently died upon BCL-2 or BCL-XL inhibition, interleukin-3 priming rendered the cells highly resistant toward apoptosis, and this could only be overcome upon combined targeting of BCL-2 and BCL-XL. Of note, human basophils differed from mouse basophils as they depended on BCL-2 and MCL-1, but not on BCL-XL, for their survival at steady state. On the other hand, and in contrast to mouse basophils, MCL-1 proved critical in mediating survival of interleukin-3 stimulated mouse mast cells, whereas BCL-XL seemed dispensable. Taken together, our results indicate that by choosing the right combination of BH3 mimetic compounds, basophils and mast cells can be efficiently killed, even after stimulation with potent pro-survival cytokines such as interleukin-3. Because of the tolerable side effects of BH3 mimetics, targeting basophils or mast cells for apoptosis opens interesting possibilities for novel treatment approaches.Cell Death and Differentiation advance online publication, 29 September 2017; doi:10.1038/cdd.2017.154

    Amyloid-associated activity contributes to the severity and toxicity of a prion phenotype

    No full text
    The self-assembly of alternative conformations of normal proteins into amyloid aggregates has been implicated in both the acquisition of new functions and in the appearance and progression of disease. However, while these amyloidogenic pathways are linked to the emergence of new phenotypes, numerous studies have uncoupled the accumulation of aggregates from their biological consequences, revealing currently underappreciated complexity in the determination of these traits. Here, to explore the molecular basis of protein-only phenotypes, we focused on the S. cerevisiae Sup35/[PSI(+)] prion, which confers a translation termination defect and expression level-dependent toxicity in its amyloid form. Our studies reveal that aggregated Sup35 retains its normal function as a translation release factor. However, fluctuations in the composition and size of these complexes specifically alter the level of this aggregate-associated activity and thereby the severity and toxicity of the amyloid state. Thus, amyloid heterogeneity is a crucial contributor to protein-only phenotypes
    corecore