2 research outputs found

    A temperature shock can lead to trans-generational immune priming in the Red Flour Beetle, Tribolium castaneum

    Full text link
    Trans-generational immune priming (TGIP) describes the transfer of immune stimulation to the next generation. As stress and immunity are closely connected, we here address the question whether trans-generational effects on immunity and resistance can also be elicited by a nonpathogen stress treatment of parents. General stressors have been shown to induce immunity to pathogens within individuals. However, to our knowledge, it is as of yet unknown whether stress can also induce trans-generational effects on immunity and resistance. We exposed a parental generation (mothers, fathers, or both parents) of the red flour beetle Tribolium castaneum, a species where TGIP has been previously been demonstrated, to either a brief heat or cold shock and examined offspring survival after bacterial infection with the entomopathogen Bacillus thuringiensis. We also studied phenoloxidase activity, a key enzyme of the insect innate immune system that has previously been demonstrated to be up-regulated upon TGIP. We quantified parental fecundity and offspring developmental time to evaluate whether trans-generational priming might have costs. Offspring resistance was found to be significantly increased when both parents received a cold shock. Offspring phenoloxidase activity was also higher when mothers or both parents were cold-shocked. By contrast, parental heat shock reduced offspring phenoloxidase activity. Moreover, parental cold or heat shock delayed offspring development. In sum, we conclude that trans-generational priming for resistance could not only be elicited by pathogens or pathogen-derived components, but also by more general cues that are indicative of a stressful environment. The interaction between stress responses and the immune system might play an important role also for trans-generational effects

    Dnmt1 has an essential function despite the absence of CpG DNA methylation in the red flour beetle Tribolium castaneum

    Full text link
    Epigenetic mechanisms, such as CpG DNA methylation enable phenotypic plasticity and rapid adaptation to changing environments. CpG DNA methylation is established by DNA methyltransferases (DNMTs), which are well conserved across vertebrates and invertebrates. There are insects with functional DNA methylation despite lacking a complete set of Dnmts. But at least one of the enzymes, DNMT1, appears to be required to maintain an active DNA methylation system. The red flour beetle, Tribolium castaneum, lacks Dnmt3 but possesses Dnmt1 and it has been controversial whether it has a functional DNA methylation system. Using whole genome bisulfite sequencing, we did not find any defined patterns of CpG DNA methylation in embryos. Nevertheless, we found Dnmt1 expressed throughout the entire life cycle of the beetle, with mRNA transcripts significantly more abundant in eggs and ovaries. A maternal knockdown of Dnmt1 caused a developmental arrest in offspring embryos. We show that Dnmt1 plays an essential role in T. castaneum embryos and that its downregulation leads to an early developmental arrest. This function appears to be unrelated to DNA methylation, since we did not find any evidence for this modification. This strongly suggests an alternative role of this protein
    corecore