1,007 research outputs found

    Path-integral representation for a stochastic sandpile

    Full text link
    We introduce an operator description for a stochastic sandpile model with a conserved particle density, and develop a path-integral representation for its evolution. The resulting (exact) expression for the effective action highlights certain interesting features of the model, for example, that it is nominally massless, and that the dynamics is via cooperative diffusion. Using the path-integral formalism, we construct a diagrammatic perturbation theory, yielding a series expansion for the activity density in powers of the time.Comment: 22 pages, 6 figure

    Nonuniversality in the pair contact process with diffusion

    Full text link
    We study the static and dynamic behavior of the one dimensional pair contact process with diffusion. Several critical exponents are found to vary with the diffusion rate, while the order-parameter moment ratio m=\bar{rho^2} /\bar{rho}^2 grows logarithmically with the system size. The anomalous behavior of m is traced to a violation of scaling in the order parameter probability density, which in turn reflects the presence of two distinct sectors, one purely diffusive, the other reactive, within the active phase. Studies restricted to the reactive sector yield precise estimates for exponents beta and nu_perp, and confirm finite size scaling of the order parameter. In the course of our study we determine, for the first time, the universal value m_c = 1.334 associated with the parity-conserving universality class in one dimension.Comment: 9 pages, 5 figure

    Nonequilibrium phase transition on a randomly diluted lattice

    Get PDF
    We show that the interplay between geometric criticality and dynamical fluctuations leads to a novel universality class of the contact process on a randomly diluted lattice. The nonequilibrium phase transition across the percolation threshold of the lattice is characterized by unconventional activated (exponential) dynamical scaling and strong Griffiths effects. We calculate the critical behavior in two and three space dimensions, and we also relate our results to the recently found infinite-randomness fixed point in the disordered one-dimensional contact process.Comment: 4 pages, 1 eps figure, final version as publishe

    Sandpiles with height restrictions

    Full text link
    We study stochastic sandpile models with a height restriction in one and two dimensions. A site can topple if it has a height of two, as in Manna's model, but, in contrast to previously studied sandpiles, here the height (or number of particles per site), cannot exceed two. This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded. Two toppling rules are considered: in one, the particles are redistributed independently, while the other involves some cooperativity. We study the fixed-energy system (no input or loss of particles) using cluster approximations and extensive simulations, and find that it exhibits a continuous phase transition to an absorbing state at a critical value zeta_c of the particle density. The critical exponents agree with those of the unrestricted Manna sandpile.Comment: 10 pages, 14 figure

    Phase diagrams in the lattice RPM model: from order-disorder to gas-liquid phase transition

    Full text link
    The phase behavior of the lattice restricted primitive model (RPM) for ionic systems with additional short-range nearest neighbor (nn) repulsive interactions has been studied by grand canonical Monte Carlo simulations. We obtain a rich phase behavior as the nn strength is varied. In particular, the phase diagram is very similar to the continuum RPM model for high nn strength. Specifically, we have found both gas-liquid phase separation, with associated Ising critical point, and first-order liquid-solid transition. We discuss how the line of continuous order-disorder transitions present for the low nn strength changes into the continuum-space behavior as one increases the nn strength and compare our findings with recent theoretical results by Ciach and Stell [Phys. Rev. Lett. {\bf 91}, 060601 (2003)].Comment: 7 pages, 10 figure

    Electron beam induced damage in PECVD Si3N4 and SiO2 films on InP

    Get PDF
    Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectic. The electron beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage

    A dynamically extending exclusion process

    Full text link
    An extension of the totally asymmetric exclusion process, which incorporates a dynamically extending lattice is explored. Although originally inspired as a model for filamentous fungal growth, here the dynamically extending exclusion process (DEEP) is studied in its own right, as a nontrivial addition to the class of nonequilibrium exclusion process models. Here we discuss various mean-field approximation schemes and elucidate the steady state behaviour of the model and its associated phase diagram. Of particular note is that the dynamics of the extending lattice leads to a new region in the phase diagram in which a shock discontinuity in the density travels forward with a velocity that is lower than the velocity of the tip of the lattice. Thus in this region the shock recedes from both boundaries.Comment: 20 pages, 12 figure

    Nonuniversal Critical Spreading in Two Dimensions

    Full text link
    Continuous phase transitions are studied in a two dimensional nonequilibrium model with an infinite number of absorbing configurations. Spreading from a localized source is characterized by nonuniversal critical exponents, which vary continuously with the density phi in the surrounding region. The exponent delta changes by more than an order of magnitude, and eta changes sign. The location of the critical point also depends on phi, which has important implications for scaling. As expected on the basis of universality, the static critical behavior belongs to the directed percolation class.Comment: 21 pages, REVTeX, figures available upon reques

    First- and second-order phase transitions in a driven lattice gas with nearest-neighbor exclusion

    Full text link
    A lattice gas with infinite repulsion between particles separated by 1\leq 1 lattice spacing, and nearest-neighbor hopping dynamics, is subject to a drive favoring movement along one axis of the square lattice. The equilibrium (zero drive) transition to a phase with sublattice ordering, known to be continuous, shifts to lower density, and becomes discontinuous for large bias. In the ordered nonequilibrium steady state, both the particle and order-parameter densities are nonuniform, with a large fraction of the particles occupying a jammed strip oriented along the drive. The relaxation exhibits features reminiscent of models of granular and glassy materials.Comment: 8 pages, 5 figures; results due to bad random number generator corrected; significantly revised conclusion
    corecore