935 research outputs found

    Path-integral representation for a stochastic sandpile

    Full text link
    We introduce an operator description for a stochastic sandpile model with a conserved particle density, and develop a path-integral representation for its evolution. The resulting (exact) expression for the effective action highlights certain interesting features of the model, for example, that it is nominally massless, and that the dynamics is via cooperative diffusion. Using the path-integral formalism, we construct a diagrammatic perturbation theory, yielding a series expansion for the activity density in powers of the time.Comment: 22 pages, 6 figure

    Activated Random Walkers: Facts, Conjectures and Challenges

    Get PDF
    We study a particle system with hopping (random walk) dynamics on the integer lattice Zd\mathbb Z^d. The particles can exist in two states, active or inactive (sleeping); only the former can hop. The dynamics conserves the number of particles; there is no limit on the number of particles at a given site. Isolated active particles fall asleep at rate λ>0\lambda > 0, and then remain asleep until joined by another particle at the same site. The state in which all particles are inactive is absorbing. Whether activity continues at long times depends on the relation between the particle density ζ\zeta and the sleeping rate λ\lambda. We discuss the general case, and then, for the one-dimensional totally asymmetric case, study the phase transition between an active phase (for sufficiently large particle densities and/or small λ\lambda) and an absorbing one. We also present arguments regarding the asymptotic mean hopping velocity in the active phase, the rate of fixation in the absorbing phase, and survival of the infinite system at criticality. Using mean-field theory and Monte Carlo simulation, we locate the phase boundary. The phase transition appears to be continuous in both the symmetric and asymmetric versions of the process, but the critical behavior is very different. The former case is characterized by simple integer or rational values for critical exponents (β=1\beta = 1, for example), and the phase diagram is in accord with the prediction of mean-field theory. We present evidence that the symmetric version belongs to the universality class of conserved stochastic sandpiles, also known as conserved directed percolation. Simulations also reveal an interesting transient phenomenon of damped oscillations in the activity density

    Asymptotic behavior of the order parameter in a stochastic sandpile

    Full text link
    We derive the first four terms in a series for the order paramater (the stationary activity density rho) in the supercritical regime of a one-dimensional stochastic sandpile; in the two-dimensional case the first three terms are reported. We reorganize the pertubation theory for the model, recently derived using a path-integral formalism [R. Dickman e R. Vidigal, J. Phys. A 35, 7269 (2002)], to obtain an expansion for stationary properties. Since the process has a strictly conserved particle density p, the Fourier mode N^{-1} psi_{k=0} -> p, when the number of sites N -> infinity, and so is not a random variable. Isolating this mode, we obtain a new effective action leading to an expansion for rho in the parameter kappa = 1/(1+4p). This requires enumeration and numerical evaluation of more than 200 000 diagrams, for which task we develop a computational algorithm. Predictions derived from this series are in good accord with simulation results. We also discuss the nature of correlation functions and one-site reduced densities in the small-kappa (large-p) limit.Comment: 18 pages, 5 figure

    Self-organized Criticality and Absorbing States: Lessons from the Ising Model

    Full text link
    We investigate a suggested path to self-organized criticality. Originally, this path was devised to "generate criticality" in systems displaying an absorbing-state phase transition, but closer examination of the mechanism reveals that it can be used for any continuous phase transition. We used the Ising model as well as the Manna model to demonstrate how the finite-size scaling exponents depend on the tuning of driving and dissipation rates with system size.Our findings limit the explanatory power of the mechanism to non-universal critical behavior.Comment: 5 pages, 2 figures, REVTeX

    Entropy of chains placed on the square lattice

    Full text link
    We obtain the entropy of flexible linear chains composed of M monomers placed on the square lattice using a transfer matrix approach. An excluded volume interaction is included by considering the chains to be self-and mutually avoiding, and a fraction rho of the sites are occupied by monomers. We solve the problem exactly on stripes of increasing width m and then extrapolate our results to the two-dimensional limit to infinity using finite-size scaling. The extrapolated results for several finite values of M and in the polymer limit M to infinity for the cases where all lattice sites are occupied (rho=1) and for the partially filled case rho<1 are compared with earlier results. These results are exact for dimers (M=2) and full occupation (\rho=1) and derived from series expansions, mean-field like approximations, and transfer matrix calculations for some other cases. For small values of M, as well as for the polymer limit M to infinity, rather precise estimates of the entropy are obtained.Comment: 6 pages, 7 figure

    Generalized mean-field study of a driven lattice gas

    Full text link
    Generalized mean-field analysis has been performed to study the ordering process in a half-filled square lattice-gas model with repulsive nearest neighbor interaction under the influence of a uniform electric field. We have determined the configuration probabilities on 2-, 4-, 5-, and 6-point clusters excluding the possibility of sublattice ordering. The agreement between the results of 6-point approximations and Monte Carlo simulations confirms the absence of phase transition for sufficiently strong fields.Comment: 4 pages (REVTEX) with 4 PS figures (uuencoded

    Theory of the NO+CO surface reaction model

    Full text link
    We derive a pair approximation (PA) for the NO+CO model with instantaneous reactions. For both the triangular and square lattices, the PA, derived here using a simpler approach, yields a phase diagram with an active state for CO-fractions y in the interval y_1 < y < y_2, with a continuous (discontinuous) phase transition to a poisoned state at y_1 (y_2). This is in qualitative agreement with simulation for the triangular lattice, where our theory gives a rather accurate prediction for y_2. To obtain the correct phase diagram for the square lattice, i.e., no active state, we reformulate the PA using sublattices. The (formerly) active regime is then replaced by a poisoned state with broken symmetry (unequal sub- lattice coverages), as observed recently by Kortluke et al. [Chem. Phys. Lett. 275, 85 (1997)]. In contrast with their approach, in which the active state persists, although reduced in extent, we report here the first qualitatively correct theory of the NO+CO model on the square lattice. Surface diffusion of nitrogen can lead to an active state in this case. In one dimension, the PA predicts that diffusion is required for the existence of an active state.Comment: 15 pages, 9 figure

    On the absorbing-state phase transition in the one-dimensional triplet creation model

    Full text link
    We study the lattice reaction diffusion model 3A -> 4A, A -> 0 (``triplet creation") using numerical simulations and n-site approximations. The simulation results provide evidence of a discontinuous phase transition at high diffusion rates. In this regime the order parameter appears to be a discontinuous function of the creation rate; no evidence of a stable interface between active and absorbing phases is found. Based on an effective mapping to a modified compact directed percolation process, shall nevertheless argue that the transition is continuous, despite the seemingly discontinuous phase transition suggested by studies of finite systems.Comment: 23 pages, 11 figure

    Scaling in self-organized criticality from interface depinning?

    Full text link
    The avalanche properties of models that exhibit 'self-organized criticality' (SOC) are still mostly awaiting theoretical explanations. A recent mapping (Europhys. Lett.~53, 569) of many sandpile models to interface depinning is presented first, to understand how to reach the SOC ensemble and the differences of this ensemble with the usual depinning scenario. In order to derive the SOC avalanche exponents from those of the depinning critical point, a geometric description is discussed, of the quenched landscape in which the 'interface' measuring the integrated activity moves. It turns out that there are two main alternatives concerning the scaling properties of the SOC ensemble. These are outlined in one dimension in the light of scaling arguments and numerical simulations of a sandpile model which is in the quenched Edwards-Wilkinson universality class.Comment: 7 pages, 3 figures, Statphys satellite meeting in Merida, July 200

    Critical behavior and Griffiths effects in the disordered contact process

    Get PDF
    We study the nonequilibrium phase transition in the one-dimensional contact process with quenched spatial disorder by means of large-scale Monte-Carlo simulations for times up to 10910^9 and system sizes up to 10710^7 sites. In agreement with recent predictions of an infinite-randomness fixed point, our simulations demonstrate activated (exponential) dynamical scaling at the critical point. The critical behavior turns out to be universal, even for weak disorder. However, the approach to this asymptotic behavior is extremely slow, with crossover times of the order of 10410^4 or larger. In the Griffiths region between the clean and the dirty critical points, we find power-law dynamical behavior with continuously varying exponents. We discuss the generality of our findings and relate them to a broader theory of rare region effects at phase transitions with quenched disorder.Comment: 10 pages, 8 eps figures, final version as publishe
    • …
    corecore