1,831 research outputs found

    Series expansion for a stochastic sandpile

    Full text link
    Using operator algebra, we extend the series for the activity density in a one-dimensional stochastic sandpile with fixed particle density p, the first terms of which were obtained via perturbation theory [R. Dickman and R. Vidigal, J. Phys. A35, 7269 (2002)]. The expansion is in powers of the time; the coefficients are polynomials in p. We devise an algorithm for evaluating expectations of operator products and extend the series to O(t^{16}). Constructing Pade approximants to a suitably transformed series, we obtain predictions for the activity that compare well against simulations, in the supercritical regime.Comment: Extended series and improved analysi

    Wang-Landau sampling in three-dimensional polymers

    Full text link
    Monte Carlo simulations using Wang-Landau sampling are performed to study three-dimensional chains of homopolymers on a lattice. We confirm the accuracy of the method by calculating the thermodynamic properties of this system. Our results are in good agreement with those obtained using Metropolis importance sampling. This algorithm enables one to accurately simulate the usually hardly accessible low-temperature regions since it determines the density of states in a single simulation.Comment: 5 pages, 9 figures arch-ive/Brazilian Journal of Physic

    Path-integral representation for a stochastic sandpile

    Full text link
    We introduce an operator description for a stochastic sandpile model with a conserved particle density, and develop a path-integral representation for its evolution. The resulting (exact) expression for the effective action highlights certain interesting features of the model, for example, that it is nominally massless, and that the dynamics is via cooperative diffusion. Using the path-integral formalism, we construct a diagrammatic perturbation theory, yielding a series expansion for the activity density in powers of the time.Comment: 22 pages, 6 figure

    Asymptotic behavior of the order parameter in a stochastic sandpile

    Full text link
    We derive the first four terms in a series for the order paramater (the stationary activity density rho) in the supercritical regime of a one-dimensional stochastic sandpile; in the two-dimensional case the first three terms are reported. We reorganize the pertubation theory for the model, recently derived using a path-integral formalism [R. Dickman e R. Vidigal, J. Phys. A 35, 7269 (2002)], to obtain an expansion for stationary properties. Since the process has a strictly conserved particle density p, the Fourier mode N^{-1} psi_{k=0} -> p, when the number of sites N -> infinity, and so is not a random variable. Isolating this mode, we obtain a new effective action leading to an expansion for rho in the parameter kappa = 1/(1+4p). This requires enumeration and numerical evaluation of more than 200 000 diagrams, for which task we develop a computational algorithm. Predictions derived from this series are in good accord with simulation results. We also discuss the nature of correlation functions and one-site reduced densities in the small-kappa (large-p) limit.Comment: 18 pages, 5 figure

    Sandpiles with height restrictions

    Full text link
    We study stochastic sandpile models with a height restriction in one and two dimensions. A site can topple if it has a height of two, as in Manna's model, but, in contrast to previously studied sandpiles, here the height (or number of particles per site), cannot exceed two. This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded. Two toppling rules are considered: in one, the particles are redistributed independently, while the other involves some cooperativity. We study the fixed-energy system (no input or loss of particles) using cluster approximations and extensive simulations, and find that it exhibits a continuous phase transition to an absorbing state at a critical value zeta_c of the particle density. The critical exponents agree with those of the unrestricted Manna sandpile.Comment: 10 pages, 14 figure

    Weakly disordered absorbing-state phase transitions

    Full text link
    The effects of quenched disorder on nonequilibrium phase transitions in the directed percolation universality class are revisited. Using a strong-disorder energy-space renormalization group, it is shown that for any amount of disorder the critical behavior is controlled by an infinite-randomness fixed point in the universality class of the random transverse-field Ising models. The experimental relevance of our results are discussed.Comment: 4 pages, 2 eps figures; (v2) references and discussion on experiments added; (v3) published version, minor typos corrected, some side discussions dropped due to size constrain

    Parasites on parasites:Coupled fluctuations in stacked contact processes

    Get PDF
    We present a model for host-parasite dynamics which incorporates both vertical and horizontal transmission as well as spatial structure. Our model consists of stacked contact processes (CP), where the dynamics of the host is a simple CP on a lattice while the dynamics of the parasite is a secondary CP which sits on top of the host-occupied sites. In the simplest case, where infection does not incur any cost, we uncover a novel effect: a non-monotonic dependence of parasite prevalence on host turnover. Inspired by natural examples of hyperparasitism, we extend our model to multiple levels of parasites and identify a transition between the maintenance of a finite and infinite number of levels, which we conjecture is connected to a roughening transition in models of surface growth

    Critical Dynamics of the Contact Process with Quenched Disorder

    Full text link
    We study critical spreading dynamics in the two-dimensional contact process (CP) with quenched disorder in the form of random dilution. In the pure model, spreading from a single particle at the critical point λc\lambda_c is characterized by the critical exponents of directed percolation: in 2+12+1 dimensions, δ=0.46\delta = 0.46, η=0.214\eta = 0.214, and z=1.13z = 1.13. Disorder causes a dramatic change in the critical exponents, to δ≃0.60\delta \simeq 0.60, η≃−0.42\eta \simeq -0.42, and z≃0.24z \simeq 0.24. These exponents govern spreading following a long crossover period. The usual hyperscaling relation, 4δ+2η=dz4 \delta + 2 \eta = d z, is violated. Our results support the conjecture by Bramson, Durrett, and Schonmann [Ann. Prob. {\bf 19}, 960 (1991)], that in two or more dimensions the disordered CP has only a single phase transition.Comment: 11 pages, REVTeX, four figures available on reques

    On the absorbing-state phase transition in the one-dimensional triplet creation model

    Full text link
    We study the lattice reaction diffusion model 3A -> 4A, A -> 0 (``triplet creation") using numerical simulations and n-site approximations. The simulation results provide evidence of a discontinuous phase transition at high diffusion rates. In this regime the order parameter appears to be a discontinuous function of the creation rate; no evidence of a stable interface between active and absorbing phases is found. Based on an effective mapping to a modified compact directed percolation process, shall nevertheless argue that the transition is continuous, despite the seemingly discontinuous phase transition suggested by studies of finite systems.Comment: 23 pages, 11 figure
    • …
    corecore