11,196 research outputs found

    EVOLUTION OF IR-SELECTED GALAXIES IN Z~0.4 CLUSTERS

    Full text link
    Wide-field optical and near--IR (JHKJHK) imaging is presented for two rich galaxy clusters: Abell~370 at z=0.374z=0.374 and Abell~851 (Cl0939+47) at z=0.407z=0.407. Galaxy catalogs selected from the near--IR images are 90\% complete to approximately 1.5 mag below K∗K^\ast resulting in samples with ∼\sim100 probable member galaxies per cluster in the central ∼\sim2 Mpc. Comparison with HSTHST WFPC images yields subsamples of ∼\sim70 galaxies in each cluster with morphological types. Analysis of the complete samples and the HSTHST subsamples shows that the z∼0.4z\sim 0.4 E/S0s are bluer than those in the Bower et al.\ (1992) Coma sample in the optical−K-K color by 0.130.13~mag for Abell~370 and by 0.180.18~mag for Abell~851. If real, the bluing of the E/S0 populations at moderate redshift is consistent with that calculated from the Bruzual and Charlot (1993) models of passive elliptical galaxy evolution. In both clusters the intrinsic scatter of the known E/S0s about their optical−K-K color--mag relation is small (∼0.06\sim 0.06 mag) and not significantly different from that of Coma E/S0s as given by Bower et al.\ (1992), indicating that the galaxies within each cluster formed at the same time at an early epoch.Comment: uuencoded gzipped tar file containing latex files of manuscript (42 pages) plus tables (9 pages); figures available by anonymous ftp at ftp://ipac.caltech.edu//pub/pickup/sed ; accepted for publication in the Ap

    The K-selected Butcher-Oemler Effect

    Full text link
    [abridged] We investigate the Butcher-Oemler effect in a sample of K-selected galaxies in 33 clusters at 0.15 < z < 0.92. We attempt to duplicate the original Butcher-Oemler analysis as closely as possible given the characteristics of our data. We find that the infrared selected blue fractions are lower than those measured in the optical and that the trend with redshift is much weaker. Comparison with optical data in clusters in common with Butcher & Oemler (1984) shows that infrared selection is the primary difference between our study and optically selected samples. We suggest that the Butcher-Oemler effect is in large part due to a population of star-forming low mass galaxies which will evolve into dwarf galaxies. These early results point to the need for larger and deeper infrared samples of cluster galaxies to address this issueComment: 37 pages, 19 figures, ApJ accepted (vol 598 n1

    Large-scale wind-tunnel tests of descent performance of an airplane model with a tilt wing and differential propeller thrust

    Get PDF
    Wind tunnel tests of wing stall, performance, and longitudinal stability & control of large model v/stol tilt wing transport aircraf

    Near-IR imaging of moderate redshift galaxy clusters

    Get PDF
    We have obtained near-IR imaging of 3 moderate-z clusters on the 1.3 m at KPNO with SQIID, a new camera offering wide-field (5.5 arcmin) simultaneous JHK band imaging. Our photometry on a sample of approximately 100 likely member galaxies in one of the clusters, Abell 370 at z = 0.37, shows that we can obtain magnitudes good to 20 percent down to K = 18, considerably below the estimated K* = 16.5 at this redshift. These data indicate that there are no systematic problems in obtaining photometry at faint levels with SQIID. With the development of larger arrays, the field is open to progress. The resulting J, H, and K data for three clusters are combined with previously obtained multiband optical photometry. We present an investigation of the spectral properties and evolution of the dominant cold stellar populations by comparing optical-to-IR colors and color-magnitude diagrams to predictions from population synthesis models and galaxy spectral evolution codes

    Kinetic instabilities that limit {\beta} in the edge of a tokamak plasma: a picture of an H-mode pedestal

    Full text link
    Plasma equilibria reconstructed from the Mega-Amp Spherical Tokamak (MAST) have sufficient resolution to capture plasma evolution during the short period between edge-localized modes (ELMs). Immediately after the ELM steep gradients in pressure, P, and density, ne, form pedestals close to the separatrix, and they then expand into the core. Local gyrokinetic analysis over the ELM cycle reveals the dominant microinstabilities at perpendicular wavelengths of the order of the ion Larmor radius. These are kinetic ballooning modes (KBMs) in the pedestal and microtearing modes (MTMs) in the core close to the pedestal top. The evolving growth rate spectra, supported by gyrokinetic analysis using artificial local equilibrium scans, suggest a new physical picture for the formation and arrest of this pedestal.Comment: Final version as it appeared in PRL (March 2012). Minor improvements include: shortened abstract, and better colour table for figures. 4 pages, 6 figure

    Applications of a Venus thermospheric circulation model

    Get PDF
    A variety of Pioneer Venus observations suggest a global scale, day-to-night Venus thermospheric circulation. Model studies of the dynamics and energetics of the Venus thermosphere are presented in order to address new driving, mixing and cooling mechanisms for an improved model simulation. The adopted approach was to reexamine the circulation by first using a previous two dimensional code to quantify those physical processes which can be inferred from the Pioneer Venus observations. Specifically, the model was used to perform sensitivity studies to determine the degree to which eddy cooling, eddy or wave drag, eddy diffusion and 15 micrometer radiational cooling are necessary to bring the model temperature and composition fields into agreement with observations. Three EUV heating cases were isolated for study. Global temperature and composition fields in good agreement with Pioneer data were obtained. Large scale horizontal winds 220 m/s were found to be consistent with the observed cold nightside temperatures and dayside bulges of O, CO and CO2. Observed dayside temperatures were obtained by using a 7 to 19% EUV heating efficiency profile. The enhanced 15 micrometer cooling needed for thermal balance is obtained using the best rate coefficient available for atomic O collisional excitation of CO2(0,1,0). Eddy conduction was not found to be a viable cooling mechanism due to the weakened global circulation. The strong 15 micrometer damping and low EUV efficiency imply a very weak dependence of the general circulation to solar cycle variability. The NCAR terrestrial thermospheric general circulation model was adapted for Venus inputs using the above two dimensional model parameters, to give a three dimensional benchmark for future Venus modelling work

    The Internal Ultraviolet-to-Optical Color Dispersion: Quantifying the Morphological K-Correction

    Full text link
    We present a quantitative measure of the internal color dispersion within galaxies, which quantifies differences in morphology as a function of wavelength. We apply this statistic to a local galaxy sample with archival images at 1500 and 2500 Angstroms from the Ultraviolet Imaging Telescope, and ground-based B-band observations to investigate how the color dispersion relates to global galaxy properties. The intenal color dispersion generally correlates with transformations in galaxy morphology as a function of wavelength, i.e., it quantifies the morphological K-correction. Mid-type spiral galaxies exhibit the highest dispersion in their internal colors, which stems from differences in the bulge, disk, and spiral-arm components. Irregulars and late-type spirals show moderate internal color dispersion, which implies that young stars generally dominate the colors. Ellipticals, lenticulars, and early-type spirals generally have low or negligible internal color dispersion, which indicates that the stars contributing to the UV-to-optical emission have a very homogeneous distribution. We discuss the application of the internal color dispersion to high-redshift galaxies in deep, Hubble Space Telescope images. By simulating local galaxies at cosmological distances, many of the galaxies have luminosities that are sufficiently bright at rest--frame optical wavelengths to be detected within the limits of the currently deepest near-infrared surveys even with no evolution. Under assumptions that the luminosity and color evolution of the local galaxies conform with the measured values of high-redshift objects, we show that galaxies' intrinsic internal color dispersion remains measurable out to z ~ 3.Comment: Accepted for publication in the Astrophysical Journal. 41 pages, 13 figures (3 color). Full resolution version (~8 Mb) available at http://mips.as.arizona.edu/~papovich/papovich_astroph.p
    • …
    corecore