790 research outputs found

    Determining the Neural Substrates of Goal-Directed Learning in the Human Brain

    Get PDF
    Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome that that response engendered. Lesion studies in rodents suggest that these two distinct components of instrumental conditioning may be mediated by anatomically distinct neural systems. The aim of the present study was to determine the neural substrates of the goal-directed component of instrumental learning in humans. Nineteen human subjects were scanned with functional magnetic resonance imaging while they learned to choose instrumental actions that were associated with the subsequent delivery of different food rewards (tomato juice, chocolate milk, and orange juice). After training, one of these foods was devalued by feeding the subject to satiety on that food. The subjects were then scanned again, while being re-exposed to the instrumental choice procedure (in extinction). We hypothesized that regions of the brain involved in goal-directed learning would show changes in their activity as a function of outcome devaluation. Our results indicate that neural activity in one brain region in particular, the orbitofrontal cortex, showed a strong modulation in its activity during selection of a devalued compared with a nondevalued action. These results suggest an important contribution of orbitofrontal cortex in guiding goal-directed instrumental choices in humans

    Neurotransmitter interactions in the stomatogastric system of the spiny lobster: One peptide alters the response of a central pattern generator to a second peptide

    Get PDF
    Two of the peptides found in the stomatogastric nervous system of the spiny lobster. Panulirus interruptus, interacted to modulate the activity of the cardiac sac motor pattern. In the isolated stomatogastric ganglion, red- pigment-concentrating hormone (RPCH), but not proctolin, activated the bursting activity in the inferior ventricular (IV) neurons that drives the cardiac sac pattern. The cardiac sac pattern normally ceased within 15 min after the end of RPCH superfusion. However, when proctolin was applied within a few minutes of that time, it was likewise able to induce cardiac sac activity. Similarly, proctolin applied together with subthreshold RPCH induced cardiac sac bursting. The amplitude of the excitatory postsynaptic potentials from the IV neurons to the cardiac sac dilator neuron CD2 (1 of the 2 major motor neurons in the cardiac sac system) was potentiated in the presence of both proctolin and RPCH. The potentiation in RPCH was much greater than in proctolin alone. However, the potentiation in proctolin after RPCH was equivalent to that recorded in RPCH alone. Although we do not yet understand the mechanisms for these interactions of the two modulators, this study provides an example of one factor that can determine the \u27state\u27 of the system that is critical in determining the effect of a modulator that is \u27state dependent,\u27 and it provides evidence for yet another level of flexibility in the motor output of this system

    Clinical evaluation of magnetic resonance imaging in coronary heart disease: The CE-MARC study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several investigations are currently available to establish the diagnosis of coronary heart disease (CHD). Of these, cardiovascular magnetic resonance (CMR) offers the greatest information from a single test, allowing the assessment of myocardial function, perfusion, viability and coronary artery anatomy. However, data from large scale studies that prospectively evaluate the diagnostic accuracy of multi-parametric CMR for the detection of CHD in unselected populations are lacking, and there are few data on the performance of CMR compared with current diagnostic tests, its prognostic value and cost-effectiveness.</p> <p>Methods/design</p> <p>This is a prospective diagnostic accuracy cohort study of 750 patients referred to a cardiologist with suspected CHD. Exercise tolerance testing (ETT) will be preformed if patients are physically able. Recruited patients will then undergo CMR and single photon emission tomography (SPECT) followed in all patients by invasive X-ray coronary angiography. The order of the CMR and SPECT tests will be randomised. The CMR study will comprise rest and adenosine stress perfusion, cine imaging, late gadolinium enhancement and whole-heart MR coronary angiography. SPECT will use a gated stress/rest protocol. The primary objective of the study is to determine the diagnostic accuracy of CMR in detecting significant coronary stenosis, as defined by X-ray coronary angiography. Secondary objectives include an assessment of the prognostic value of CMR imaging, a comparison of its diagnostic accuracy against SPECT and ETT, and an assessment of cost-effectiveness.</p> <p>Discussion</p> <p>The CE-MARC study is a prospective, diagnostic accuracy cohort study of 750 patients assessing the performance of a multi-parametric CMR study in detecting CHD using invasive X-ray coronary angiography as the reference standard and comparing it with ETT and SPECT.</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN77246133</p

    Ozone depletion, greenhouse gases, and climate change

    Get PDF
    This symposium was organized to study the unusual convergence of a number of observations, both short and long term that defy an integrated explanation. Of particular importance are surface temperature observations and observations of upper atmospheric temperatures, which have declined significantly in parts of the stratosphere. There has also been a dramatic decline in ozone concentration over Antarctica that was not predicted. Significant changes in precipitation that seem to be latitude dependent have occurred. There has been a threefold increase in methane in the last 100 years; this is a problem because a source does not appear to exist for methane of the right isotopic composition to explain the increase. These and other meteorological global climate changes are examined in detail

    LS Peg: A Low-Inclination SW Sextantis-Type Cataclysmic Binary with High-Velocity Balmer Emission Line Wings

    Get PDF
    We present time-resolved spectroscopy and photometry of the bright cataclysmic variable LS Peg (= S193). The Balmer lines exhibit broad, asymmetric wings Doppler-shifted by about 2000 km/s at the edges, while the HeI lines show phase-dependent absorption features strikingly similar to SW Sextantis stars, as well as emission through most of the phase. The CIII/NIII emission blend does not show any phase dependence. From velocities of Halpha emission lines, we determine an orbital period of 0.174774 +/- 0.000003 d (= 4.1946 h), which agrees with Szkody's (1995) value of approximately 4.2 hours. No stable photometric signal was found at the orbital period. A non-coherent quasi-periodic photometric signal was seen at a period of 20.7 +/- 0.3 min. The high-velocity Balmer wings most probably arise from a stream re-impact point close to the white dwarf. We present simulated spectra based on a kinematic model similar to the modified disk-overflow scenario of Hellier & Robinson (1994). The models reproduce the broad line wings, though some other details are unexplained. Using an estimate of dynamical phase based on the model, we show that the phasing of the emission- and absorption-line variations is consistent with that in (eclipsing) SW Sex stars. We therefore identify LS Peg as a low-inclination SW Sex star. Our model suggests i = 30 deg, and the observed absence of any photometric signal at the orbital frequency establishes i < 60 deg. This constraint puts a severe strain on interpretations of the SW Sex phenomenon which rely on disk structures lying slightly out of the orbital plane.Comment: 29 pages, 13 figures, to be published in PASP Feb. 199

    Spectroscopy of Nine Cataclysmic Variable Stars

    Full text link
    We present optical spectroscopy of nine cataclysmic binary stars, mostly dwarf novae, obtained primarily to determine orbital periods Porb. The stars and their periods are LX And, 0.1509743(5) d; CZ Aql, 0.2005(6) d; LU Cam, 0.1499686(4) d; GZ Cnc, 0.0881(4) d; V632 Cyg, 0.06377(8) d; V1006 Cyg, 0.09903(9) d; BF Eri, 0.2708804(4) d; BI Ori, 0.1915(5) d; and FO Per, for which Porb is either 0.1467(4) or 0.1719(5) d. Several of the stars proved to be especially interesting. In BF Eri, we detect the absorption spectrum of a secondary star of spectral type K3 +- 1 subclass, which leads to a distance estimate of approximately 1 kpc. However, BF Eri has a large proper motion (100 mas/yr), and we have a preliminary parallax measurement that confirms the large proper motion and yields only an upper limit for the parallax. BF Eri's space velocity is evidently large, and it appears to belong to the halo population. In CZ Aql, the emission lines have strong wings that move with large velocity amplitude, suggesting a magnetically-channeled accretion flow. The orbital period of V1006 Cyg places it squarely within the 2- to 3-hour "gap" in the distribution of cataclysmic binary orbital periods.Comment: 31 pages, 5 postscript and one PNG figure. Accepted for PAS
    corecore