58 research outputs found
Protocol for a multicentre, parallel-arm, 12-month, randomised, controlled trial of arthroscopic surgery versus conservative care for femoroacetabular impingement syndrome (FASHIoN)
Introduction Femoroacetabular impingement (FAI) syndrome is a recognised cause of young adult hip pain. There has been a large increase in the number of patients undergoing arthroscopic surgery for FAI; however, a recent Cochrane review highlighted that there are no randomised controlled trials (RCTs) evaluating treatment effectiveness. We aim to compare the clinical and cost-effectiveness of arthroscopic surgery versus best conservative care for patients with FAI syndrome.
Methods We will conduct a multicentre, pragmatic, assessor-blinded, two parallel arm, RCT comparing arthroscopic surgery to physiotherapy-led best conservative care. 24 hospitals treating NHS patients will recruit 344 patients over a 26-month recruitment period. Symptomatic adults with radiographic signs of FAI morphology who are considered suitable for arthroscopic surgery by their surgeon will be eligible. Patients will be excluded if they have radiographic evidence of osteoarthritis, previous significant hip pathology or previous shape changing surgery. Participants will be allocated in a ratio of 1:1 to receive arthroscopic surgery or conservative care. Recruitment will be monitored and supported by qualitative intervention to optimise informed consent and recruitment. The primary outcome will be pain and function assessed by the international hip outcome tool 33 (iHOT-33) measured 1-year following randomisation. Secondary outcomes include general health (short form 12), quality of life (EQ5D-5L) and patient satisfaction. The primary analysis will compare change in pain and function (iHOT-33) at 12 months between the treatment groups, on an intention-to-treat basis, presented as the mean difference between the trial groups with 95% CIs. The study is funded by the Health Technology Assessment Programme (13/103/02).
Ethics and dissemination Ethical approval is granted by the Edgbaston Research Ethics committee (14/WM/0124). The results will be disseminated through open access peer-reviewed publications, including Health Technology Assessment, and presented at relevant conferences.
Trial registration number ISRCTN64081839; Pre-results
Taking tissue seriously means taking communities seriously
<p>Abstract</p> <p>Background</p> <p>Health research is increasingly being conducted on a global scale, particularly in the developing world to address leading causes of morbidity and mortality. While research interest has increased, building scientific capacity in the developing world has not kept pace. This often leads to the export of human tissue (defined broadly) from the developing to the developed world for analysis. These practices raise a number of important ethical issues that require attention.</p> <p>Discussion</p> <p>In the developed world, there is great heterogeneity of regulatory practices regarding human tissues. In this paper, we outline the salient ethical issues raised by tissue exportation, review the current ethical guidelines and norms, review the literature on what is known empirically about perceptions and practices with respect to tissue exportation from the developing to the developed world, set out what needs to be known in terms of a research agenda, and outline what needs to be done immediately in terms of setting best practices. We argue that the current status of tissue exportation is ambiguous and requires clarification lest problems that have plagued the developed world occur in the context of global heath research with attendant worsening of inequities. Central to solutions to current ethical concerns entail moving beyond concern with individual level consent and embracing a robust interaction with communities engaged in research.</p> <p>Conclusion</p> <p>Greater attention to community engagement is required to understand the diverse issues associated with tissue exportation.</p
Ethical issues in human genomics research in developing countries
<p>Abstract</p> <p>Background</p> <p>Genome-wide association studies (GWAS) provide a powerful means of identifying genetic variants that play a role in common diseases. Such studies present important ethical challenges. An increasing number of GWAS is taking place in lower income countries and there is a pressing need to identify the particular ethical challenges arising in such contexts. In this paper, we draw upon the experiences of the MalariaGEN Consortium to identify specific ethical issues raised by such research in Africa, Asia and Oceania.</p> <p>Discussion</p> <p>We explore ethical issues in three key areas: protecting the interests of research participants, regulation of international collaborative genomics research and protecting the interests of scientists in low income countries. With regard to participants, important challenges are raised about community consultation and consent. Genomics research raises ethical and governance issues about sample export and ownership, about the use of archived samples and about the complexity of reviewing such large international projects. In the context of protecting the interests of researchers in low income countries, we discuss aspects of data sharing and capacity building that need to be considered for sustainable and mutually beneficial collaborations.</p> <p>Summary</p> <p>Many ethical issues are raised when genomics research is conducted on populations that are characterised by lower average income and literacy levels, such as the populations included in MalariaGEN. It is important that such issues are appropriately addressed in such research. Our experience suggests that the ethical issues in genomics research can best be identified, analysed and addressed where ethics is embedded in the design and implementation of such research projects.</p
Functional selectivity of adenosine receptor ligands
Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins
The genetic epidemiology of joint shape and the development of osteoarthritis
Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed
Keratan sulphate in the tumour environment
Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose β1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue–associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes
- …