3 research outputs found

    Stress correlations of dislocations in a double-pileup configuration: a continuum dislocation density approach – complas XII

    Get PDF
    Dislocation motion in the crystal lattice of materials is the basis for macroscopic plasticity. While continuum models for describing the role of dislocations in plasticity have existed for decades, only recently have the mathematical tools become available to describe ensembles of moving, oriented lines. These tools have allowed for the creation of a Continuum Dislocation Dynamics (CDD) theory describing a second-order dislocation density tensor, a higher order analog of the classical dislocation density tensor, and its evolution in time. In order to reduce the computational complexity of the theory, a simplified theory has also been developed, which more readily allows for a numerical implementation, useful for describing larger systems of dislocations. In order to construct a self-consistent implementation, several issues have to be resolved including calculation of the stress field of a system of dislocations, coarse graining, and boundary values. The present work deals with the implementation including treatment of the near- and far-field stresses caused by the dislocation density tensor as well as boundary value considerations. The implementation is then applied to a few simple benchmark problems, notably the double pileup of dislocations in 1D. Applications to more general problems are considered, as well as comparisons with analytical solutions to classical dislocation problems. Focus is placed on problems where analytical solutions as well as simulations of discrete dislocations are known which act, along with experimental results, as the basis of comparison to determine the validity of the results

    Substrate patterning by electron emission-induced displacement

    Get PDF
    Disclosed are methods and devices for patterning micro- and/or nano-sized pattern elements on a substrate using field emitted electrons from an element. Disclosed methods and devices can also be utilized to form nano- and micron-sized depressions in a substrate according to a more economical process than as has been utilized in the past. Methods include single-step methods by which structures can be simultaneously created and located at desired locations on a substrate. Methods include the application of a bias voltage between a probe tip and a substrate held at a relatively close gap distance. The applied voltage can promote current flow between the probe and the substrate via field emissions. During a voltage pulse, and within predetermined energy levels and tip-to-surface gap distances, three dimensional formations can be developed on the substrate surface

    Non-linear electrical actuation and detection

    Get PDF
    A method and system is disclosed to detect and analyze an electric signal based on movement between an element and a counter electrode influenced by a nonlinear electric field produced by an electrical signal impressed between the element and counter electrode. Through detection of changes in the distance between the element and the counter electrode characteristics of the element and/or the environment of the element may be ascertained. Changes in the distance between the element and the counter electrode may be monitored based on changes in the value of capacitance between the element and counter electrode. The disclosed devices and methods may be employed to detect, for instance, presence of chemical/biological species in a sample or measure physical parameters of a sample such as pressure/acceleration, density, viscosity, magnetic force, temperature, and/or extremely small masses
    corecore