758 research outputs found

    Is there a no-go theorem for superradiant quantum phase transitions in cavity and circuit QED ?

    Get PDF
    In cavity quantum electrodynamics (QED), the interaction between an atomic transition and the cavity field is measured by the vacuum Rabi frequency Ω0\Omega_0. The analogous term "circuit QED" has been introduced for Josephson junctions, because superconducting circuits behave as artificial atoms coupled to the bosonic field of a resonator. In the regime with Ω0\Omega_0 comparable to the two-level transition frequency, "superradiant" quantum phase transitions for the cavity vacuum have been predicted, e.g. within the Dicke model. Here, we prove that if the time-independent light-matter Hamiltonian is considered, a superradiant quantum critical point is forbidden for electric dipole atomic transitions due to the oscillator strength sum rule. In circuit QED, the capacitive coupling is analogous to the electric dipole one: yet, such no-go property can be circumvented by Cooper pair boxes capacitively coupled to a resonator, due to their peculiar Hilbert space topology and a violation of the corresponding sum rule

    Enhanced Transmission of Light and Particle Waves through Subwavelength Nanoapertures by Far-Field Interference

    Full text link
    Subwavelength aperture arrays in thin metal films can enable enhanced transmission of light and matter (atom) waves. The phenomenon relies on resonant excitation and interference of the plasmon or matter waves on the metal surface. We show a new mechanism that could provide a great resonant and nonresonant transmission enhancement of the light or de Broglie particle waves passed through the apertures not by the surface waves, but by the constructive interference of diffracted waves (beams generated by the apertures) at the detector placed in the far-field zone. In contrast to other models, the mechanism depends neither on the nature (light or matter) of the beams (continuous waves or pulses) nor on material and shape of the multiple-beam source (arrays of 1-D and 2-D subwavelength apertures, fibers, dipoles or atoms). The Wood anomalies in transmission spectra of gratings, a long standing problem in optics, follow naturally from the interference properties of our model. The new point is the prediction of the Wood anomaly in a classical Young-type two-source system. The new mechanism could be interpreted as a non-quantum analog of the superradiance emission of a subwavelength ensemble of atoms (the light power and energy scales as the number of light-sources squared, regardless of periodicity) predicted by the well-known Dicke quantum model.Comment: Revised version of MS presented at the Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference, 18-21 June, 2007, Washington, US

    Singularity Free (Homogeneous Isotropic) Universe in Graviton-Dilaton Models

    Get PDF
    We present a class of graviton-dilaton models in which a homogeneous isotropic universe, such as our observed one, evolves with no singularity at any time. Such models may stand on their own as interesting models for singularity free cosmology, and may be studied further accordingly. They may also arise from string theory. We discuss critically a few such possibilities.Comment: 11 pages. Latex file. Revised in response to referees' Comments. Results remain same. To appear in Phys. Rev. Let

    Drastic effects of damping mechanisms on the third-order optical nonlinearity

    Full text link
    We have investigated the optical response of superradiant atoms, which undergoes three different damping mechanisms: radiative dissipation (Îłr\gamma_r), dephasing (Îłd\gamma_d), and nonradiative dissipation (Îłn\gamma_n). Whereas the roles of Îłd\gamma_d and Îłn\gamma_n are equivalent in the linear susceptibility, the third-order nonlinear susceptibility drastically depends on the ratio of Îłd\gamma_d and Îłn\gamma_n: When Îłdâ‰ȘÎłn\gamma_d \ll \gamma_n, the third-order susceptibility is essentially that of a single atom. Contrarily, in the opposite case of Îłd≫γn\gamma_d \gg \gamma_n, the third-order susceptibility suffers the size-enhancement effect and becomes proportional to the system size.Comment: 5pages, 2figure

    The influence of the cosmological expansion on local systems

    Get PDF
    Following renewed interest, the problem of whether the cosmological expansion affects the dynamics of local systems is reconsidered. The cosmological correction to the equations of motion in the locally inertial Fermi normal frame (the relevant frame for astronomical observations) is computed. The evolution equations for the cosmological perturbation of the two--body problem are solved in this frame. The effect on the orbit is insignificant as are the effects on the galactic and galactic--cluster scales.Comment: To appear in the Astrophysical Journal, Late

    Enhancement and suppression of spontaneous emission and light scattering by quantum degeneracy

    Full text link
    Quantum degeneracy modifies light scattering and spontaneous emission. For fermions, Pauli blocking leads to a suppression of both processes. In contrast, in a weakly interacting Bose-Einstein condensate, we find spontaneous emission to be enhanced, while light scattering is suppressed. This difference is attributed to many-body effects and quantum interference in a Bose-Einstein condensate.Comment: 4 pages 1 figur

    Prey and Non-prey Arthropods Sharing a Host Plant: Effects on Induced Volatile Emission and Predator Attraction

    Get PDF
    It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile emissions of lima bean and cucumber plants upon multi-species herbivory by spider mites (Tetranychus urticae) and caterpillars (Spodoptera exigua) in comparison to single-species herbivory. Upon herbivory by single or multiple species, lima bean and cucumber plants emitted volatile blends that comprised mostly the same compounds. To detect additive, synergistic, or antagonistic effects, we compared the multi-species herbivory volatile blend with the sum of the volatile blends induced by each of the herbivore species feeding alone. In lima bean, the majority of compounds were more strongly induced by multi-species herbivory than expected based on the sum of volatile emissions by each of the herbivores separately, potentially caused by synergistic effects. In contrast, in cucumber, two compounds were suppressed by multi-species herbivory, suggesting the potential for antagonistic effects. We also studied the behavioral responses of the predatory mite Phytoseiulus persimilis, a specialized natural enemy of spider mites. Olfactometer experiments showed that P. persimilis preferred volatiles induced by multi-species herbivory to volatiles induced by S. exigua alone or by prey mites alone. We conclude that both lima bean and cucumber plants effectively attract predatory mites upon multi-species herbivory, but the underlying mechanisms appear different between these species

    Protecting Quantum Information Encoded in Decoherence Free States Against Exchange Errors

    Full text link
    The exchange interaction between identical qubits in a quantum information processor gives rise to unitary two-qubit errors. It is shown here that decoherence free subspaces (DFSs) for collective decoherence undergo Pauli errors under exchange, which however do not take the decoherence free states outside of the DFS. In order to protect DFSs against these errors it is sufficient to employ a recently proposed concatenated DFS-quantum error correcting code scheme [D.A. Lidar, D. Bacon and K.B. Whaley, Phys. Rev. Lett. {\bf 82}, 4556 (1999)].Comment: 7 pages, no figures. Discussion in section V.A. significantly expanded. Several small changes. Two authors adde

    Instruments of RT-2 Experiment onboard CORONAS-PHOTON and their test and evaluation III: Coded Aperture Mask and Fresnel Zone Plates in RT-2/CZT Payload

    Full text link
    Imaging in hard X-rays of any astrophysical source with high angular resolution is a challenging job. Shadow-casting technique is one of the most viable options for imaging in hard X-rays. We have used two different types of shadow-casters, namely, Coded Aperture Mask (CAM) and Fresnel Zone Plate (FZP) pair and two types of pixellated solid-state detectors, namely, CZT and CMOS in RT-2/CZT payload, the hard X-ray imaging instrument onboard the CORONAS-PHOTON satellite. In this paper, we present the results of simulations with different combinations of coders (CAM & FZP) and detectors that are employed in the RT-2/CZT payload. We discuss the possibility of detecting transient Solar flares with good angular resolution for various combinations. Simulated results are compared with laboratory experiments to verify the consistency of the designed configuration.Comment: 27 pages, 16 figures, Accepted for publication in Experimental Astronomy (in press

    On Multiparticle Entanglement via Resonant Interaction between Light and atomic Ensembles

    Full text link
    Multiparticle entangled states generated via interaction between narrow-band light and an ensemble of identical two-level atoms are considered. Depending on the initial photon statistics, correlation between atoms and photons can give rise to entangled states of these systems. It is found that the state of any pair of atoms interacting with weak single-mode squeezed light is inseparable and robust against decay. Optical schemes for preparing entangled states of atomic ensembles by projective measurement are described.Comment: 11 pages, 1 figure, revtex
    • 

    corecore