21 research outputs found

    Eicosapentaenoic acid incorporation in membrane phospholipids modulates receptor-mediated phospholipase C and membrane fluidity in rat ventricular myocytes in culture

    Get PDF
    The influence of increased incorporation of linoleic acid (18:2n-6) and eicosapentaenoic acid (20:5n-3) in membrane phospholipids on receptor-mediated phospholipase Cβ (PLC-β) activity in cultured rat ventricular myocytes was investigated. For this purpose, cells were grown for 4 days in control, stearic acid (18:0)/oleic acid (18:1n-9), 18:2n-6 and 20:5n-3 enriched media, and subsequently assayed for the basal- and phenylephrine- or endothelin-1-induced total inositol phosphate formation. The various fatty acid treatments resulted in the expected alterations of fatty acid composition of membrane phospholipids. In 18:2n-6-treated cells, the incorporation of this 18:2n-6 in the phospholipids increased from 17.1 mol % in control cells to 38.9 mol %. In 20:5n-3-treated cells, incorporation of 20: 5n-3 and docosapentaenoic acid (22:5n-3) in the phospholipids increased from 0.5 and 2.7 mol % in control cells to 23.2 and 9.7 mol %, respectively. When 20:5n-3-treated cells were stimulated with phenylephrine or endothelin-1, the inositolphosphate production decreased by 33.2% and increased by 43.4%, respectively, as compared to cells grown in control medium. No efffects were seen in 18:2n-6-treated cells. When 18:0/18:1n-9-treated cells were stimulated with endothelin-1, inositolphosphate formation increased by 26.4%, whereas phenylephrine-stimulated inositolphosphate formation was not affected. In saponin-permeabilized cells, that were pre-treated with 20:5n-3, the formation of total inositolphosphates after stimulation with GTPγS, in the presence of Ca2+, was inhibited 19.3%. This suggests that the 20:5n-3 effect on intact cardiomyocytes could be exerted either on the level of agonist-receptor, receptor-GTP-binding-protein coupling or GTP-binding-protein-PLC-β interaction. Investigation of the time course of saponin-induced permeabilization of the cardiomyocytes, measured by the release of lactate dehydrogenase, unmasked a slight decrease in the rate of permeabilization by 20:5n-3 pretreatment, indicating a protective effect. This led the authors to measure the cholesterol/phospholipid molar ratio, the double bond index of membrane phospholipids, and the membrane fluidity; the latter by using a diphenylhexatriene probe. In 20: 5n-3-pretreated cells, a strong increase in the cholesterol/phospholipid molar ratio (from 0.23 to 0.39), a marked increase in the double bond index (from 1.76 to 2.33), and a slight decrease in fluidity (steady-state anisotropy r(ss) of the diphenylhexatriene probe increased from 0.196 to 0.217) were observed. Thus, treatment of cardiomyocytes for 4 days with 20:5n-3, but not with 18:2n-6, causes alterations of receptor-mediated phospholipase Cβ activity. A causal relationship may exist between the 20:5 n-3-induced alterations of the physicochemical properties in the bilayer and of the agonist-stimulated phosphatidylinositol cycle activity

    C. elegans TFIIH subunit GTF-2H5/TTDA is a non-essential transcription factor indispensable for DNA repair

    Get PDF
    The 10-subunit TFIIH complex is vital to transcription and nucleotide excision repair. Hereditary mutations in its smallest subunit, TTDA/GTF2H5, cause a photosensitive form of the rare developmental disorder trichothiodystrophy. Some trichothiodystrophy features are thought to be caused by subtle transcription or gene expression defects. TTDA/GTF2H5 knockout mice are not viable, making it difficult to investigate TTDA/GTF2H5 in vivo function. Here we show that deficiency of C. elegans TTDA ortholog GTF-2H5 is, however, compatible with life, in contrast to depletion of other TFIIH subunits. GTF-2H5 promotes TFIIH stability in multiple tissues and is indispensable for nucleotide excision repair, in which it facilitates recruitment of TFIIH to DNA damage. Strikingly, when transcription is challenged, gtf-2H5 embryos die due to the intrinsic TFIIH fragility in absence of GTF-2H5. These results support the idea that TTDA/GTF2H5 mutations cause transcription impairment underlying trichothiodystrophy and establish C. elegans as model for studying pathogenesis of this disease.</p

    Polyunsaturated fatty acids and signalling via phospholipase C-β and A2 in myocardium

    No full text
    Dietary n-6 and n-3 polyunsaturated fatty acids (PUFAs) have potent biological effects on the blood(cells), the vasculature and the myocardium. In the epidemiological studies in which the benefit from the regular ingestion of n-3 PUFAs was reported, the responsible mechanisms remain obscure. A great deal of the PUFA-effect can be explained by the known interference with the eicosanoid metabolism. Many processes, believed to be involved in atherogenesis such as adhesion and infiltration of bloodcells (in)to the vasculature, platelet aggregation, secretion of endothelium-derived factors and mitogenic responses of vascular smooth muscle cells are partially mediated by receptor-activated phospholipases C-β and A2. As PUFAs take part at many steps of the signalling pathways, the latter could represent important action sites to beneficially interfere with atherogenesis. In this brief review, we have discussed the results of studies on the influence of alteration of PUFA composition of the membrane phospholipids or of exogenously administered non-esterified PUFAs on phospholipid signalling. For convenience, we have mainly focused our discussion on those studies available on the myocardium. By changing the PUFA composition of the phospholipids, the endogenous substrates for the membrane-associated phospholipase C-β and A2 are changed. This is accompanied by changes in their hydrolytic action on these substrates resulting in altered products (the molecular species of 1,2-diacylglycerols and the non-esterified PUFAs) which on their turn evoke changes in events downstream of the signalling cascades: activation of distinct protein kinase C isoenzymes, formation of distinct eicosanoids and non-esterified PUFA effects on Ca2+ channels. It has also become more clear that the membrane physicochemical properties, in terms of fluidity and cholesterol content of the bilayer, might undergo changes due to altered PUFA incorporation into the membrane phospholipids. The latter effects could have consequences for the receptor functioning, receptor-GTP-binding protein coupling, GTP-binding protein-phospholipase C-β or A2 coupling as well. It should be noted that most of these studies have been carried out with cardiomyocytes isolated from hearts of animals on PUFA diet or incubation of cultured cardiomyocytes with non-esterified PUFAs in the presence of albumin. Studies need to be performed to prove that the PUFA-diet induced modulations of the phospholipid signalling reactions do occur in vivo and that these effects are involved in the mechanism of beneficial effects of dietary PUFAs on the process of atherosclerosis

    Homologous Desensitization of the Endothelin-1 Receptor Mediated Phosphoinositide Response in Cultured Neonatal Rat Cardiomyocytes

    No full text
    The goal of the present study was to identify the molecular mechanism underlying desensitization of endothelin-1 receptor-mediated phosphoinositide response in cultured neonatal rat heart cells. Endothelin elicited a concentration-dependent (EC50=2.2 × 10-9 M) increase of inositolphosphate production with a much higher potency then phenylephrine (EC50=1.4 × 10-6 M). Endothelin-1 (10-8 M) evoked phosphoinositide turnover in the presence of 10 mM LiCl, which was greatly attenuated after 30-45 min of continuous stimulation with agonist, apparently resulting in a total absence of further inositolphosphate accumulation. However, when the uncompetitive inositol monophosphatase inhibitor Li+ was only present during the last 30 min of 150 min incubation, the inositolphosphate accumulation was decreased to a steady state of 33% of the initial rate. The loss of responsiveness of cardiomyocytes to endothelin-1 was not brought about by a limiting supply of phospholipase C substrate phosphatidylinositol 4,5-bishosphate. A very rapid resynthesis of this substrate took place as its level remained almost constant during 45 min stimulation with 10-8M endothelin-1 while the accumulation of inositolphosphates was at least 15-fold higher than the initial cellular phosphatidylinositol 4,5-bisphosphate content. After 120 min preincubation of cells with 10-9M endothelin-1 the activation of phospholipase C by a second higher dose (10-8 M) was severely (67%) inhibited at the same time leaving the induction of phosphoinositide turnover by phenylephrine (10-4 M) virtually intact. Preincubation with phenylephrine (3 × 10-6 M) also led to inhibition of the phenylephrine (10-4 M) mediated inositolphosphate response (36% inhibition) while the endothelin-1 (10-8 M) response was not affected. Addition of a direct activator of protein kinase C, phorbol 12-myristate 13-acetate, led to inhibition of the endothelin-1 evoked phosphoinositide turnover but the rate of desensitization was not affected. Inhibition of protein kinase C with staurosporine did not alter the time course of desensitization. In conclusion, the activity of the phosphoinositide cycle in cardiomyocytes is homologously desensitized after stimulation with endothelin-1. The desensitization is not likely to be due to either depletion of phospholipase C substrate or to the activation of protein kinase C by inositol 1,4,5-trisphosphate-mobilized Ca2+ and elevated 1,2-diacylglycerol levels

    Modification of fatty acid composition of the phospholipids of cultured rat ventricular myocytes and the rate of phosphatidylinositol-4,5-bisphosphate hydrolysis

    No full text
    Cultured neonatal cardiac myocytes have been utilized as a model for the study of the role of fatty acids in the α1-adrenoceptor mediated phosphatidylinositol turnover. Experiments were started 24h after seeding, when there was a confluent monolayer of beating cardiomyocytes. The cells were incubated for 3-4 days in sera containing culture medium with (1) no additives or (2) a mixture of 107 μm 18:0 and 18:1n-9, or (3) only 214 μm 18:2n-6 or (4) 214 μm 20:5n-3. No differences in the cellular content of the various phospholipid classes among the different groups of fatty acid treated cells were found. The predicted elevations of 18:1n-9, 18:2n-6 and 20:5n-3 associated with a partial depletion of 20:4n-6 were confirmed in all phospholipid classes, except for sphingomyelin. The mol % of 18:0, 18:2n-6, 20:4n-6 and 20:5n-3 in the phosphatidylinositol fraction were respectively 39, 4, 30 and 0.6 for the control treated cells, 34, 3, 15 and 0 for 18:0/18:1n-9 treated cells, 40, 17, 24 and 0.2 for the 18:2n-6 treated cells and 41, 3, 13 and 21 for the 20:5n-3 treated cells. Apart from the observed reductions in the basal rates, the phenylephrine (30μm) stimulated production of inositolphosphates was reduced by 51% and 71%, respectively in the 18:2n-6 and 20:5n-3 treated cardiomyocytes. The basal rate of inositolphosphate formation was 37% increased in the 18:0 18:1n-9 treated cells. The [3H]-inositol incorporation into phosphatidylinositol 4,5-bisphosphate was only slightly reduced by 18:2n-6 and 20:5n-3 treatments (respectively 12 and 28% compared to control treated cells). Prolonged (30 min) α1-adrenergic stimulation did not affect the contents and fatty acid profiles of any class of phospholipid, not even phosphatidylinositol. In conclusion, variations in the polyunsaturated fatty acid composition of membrane phospholipids do affect the basal and the α1-adrenoceptor stimulated rate of phosphatidylinositol-4,5-bisphosphate hydrolysis. The reducing effects of 18:2n-6 and 20:5n-3 treatment on the rate of inositolphosphate production may be partially ascribed to altered levels of phosphatidylinositol 4,5-bisphosphate

    Application of proteomics in cardiovascular research

    No full text
    This review focuses on the current status of proteomic techniques that can be specifically applied to heart. Proteomics allows us to study alterations in protein expression in diseased hearts and leads us to develop new diagnostics and therapeutic parameters. The availability of the high resolution capacity of 2-DE can be successfully used to separate proteins in the first dimension according to their charge (isoelectric point) under denaturing conditions followed by their separation according to their molecular mass by SDS PAGE. The separated proteins are then visualized at high sensitivity with SYPRO dyes, especially SYPRO Ruby which is the most appropriate post-electrophoretic stain because of its compatibility for subsequent MS analysis. After the generation of a large protein dataset, they are organized using bioinformatics. Even though proteomics techniques have undergone substantial improvement, it remains a problem to identify phosphorylated proteins, which may be used for early disease detection. The proteomics analysis discussed in this review can be used for drug discovery, development of therapeutic modalities for cardiovascular diseases and the design of clinical trials. Proteins play more dynamic roles compared to DNA and RNA since most biological functions are regulated by protein-protein interactions. Protein-protein interaction mapping is crucial for many degenerative diseases and proteomics play an important role in understanding the molecular mechanisms of cellular functions. Though advancements in equipmentation have been made, it is unlikely to gain although MS is a powerful and evolving technique, the cost of running a sample needs to be considered. For example, regarding the cost of labeling, iTRAC runs about $400/sample and as many as 30 biological samples may be required to reach statistical significance in patient samples. Extensive time is also needed on a MS machine to run a fractionated sample on the order of days (times the number of samples). Once large datasets are generated, a bioinformaticist is required to align and analyze data from multiple treatment groups. An additional limitation is that the protein and splice variants have to be characterized to be identified by search engines. A number of predicted proteins may be identified with limited commercial resources available to follow up on such targets. Finally, though there have been advances in mass spectrometry equipment such as the Fouriertransform ion cyclotron resonance MS that generate higher sensitivity and dynamic range, there is a lack of standardization of protocols from sample collection and processing along the pipeline to data analysis. Unlike genomic data there is no community standard for database sharing. Although there are limitations to the technique, proteomics is likely to have great impact on drug discovery and clinical trial design leading to the development of niche personalized medicine. There is a definite need for early disease detection with appropriate biomarkers and proteomics are the tool to fulfill the requirement. For example, a routine, specific and sensitive serum proteomic pattern for cardiovascular diseases would be useful to clinicians for the early detection of diseases. In this regard, a low-resolution SELDI-TOF proteomic profile could be extremely useful. Compared to mRNAs, proteins are subjected to posttranslational modifications like phosphorylation, glycosylation and cleavage, and thus genomics are likely to miss the correct targets. This is of utmost importance for disease-related proteomics to become an essential component of personalized medicine system, which has great promise for the improvement of disease evaluation and patient care

    Myocardial phosphoinositides do not share the same fatty acid profile

    No full text
    It is generally assumed that the fatty acid compositions of the phosphoinositides are identical. To investigate this in myocardium, inositol lipids extracted from rat and pig ventricular homogenates were absorbed to neomycin-coated glass heads, eluted and quantitated by fatty acid analysis after thin-layer chromatography. The percentages of stearic, oleic, linoleic and arachidonic acid (20:4n-6) in the rat were, respectively, 49, 4, 7 and 26 for phosphatidylinositol, 62, 1, 4 and 18 for phosphatidylinositol-4-monophosphate and 63,2,4, 18 for phosphatidylinositol-4,5-bisphosphate. Equal distribution patterns of fatty acids were found in homogenate and sarcoplasmic reticulum of pig myocardium. Cultured rat ventricular myocytes were utilized to study the incorporation (25 h) of [14C]20:4n-6 relative to that of myo-[3H]inositol into phosphatidylinositol and phosphatidylinositol-4,5-bisphosphate which were, respectively, 1.61 and 1.22. The data indicate that in myocardium phosphatidylinositol-4,5-bisphosphate represents a relatively modest source of 20:4n-6

    Eicosapentaenoic acid incorporation in membrane phospholipids modulates receptor-mediated phospholipase C and membrane fluidity in rat ventricular myocytes in culture

    No full text
    The influence of increased incorporation of linoleic acid (18:2n-6) and eicosapentaenoic acid (20:5n-3) in membrane phospholipids on receptor-mediated phospholipase Cβ (PLC-β) activity in cultured rat ventricular myocytes was investigated. For this purpose, cells were grown for 4 days in control, stearic acid (18:0)/oleic acid (18:1n-9), 18:2n-6 and 20:5n-3 enriched media, and subsequently assayed for the basal- and phenylephrine- or endothelin-1-induced total inositol phosphate formation. The various fatty acid treatments resulted in the expected alterations of fatty acid composition of membrane phospholipids. In 18:2n-6-treated cells, the incorporation of this 18:2n-6 in the phospholipids increased from 17.1 mol % in control cells to 38.9 mol %. In 20:5n-3-treated cells, incorporation of 20: 5n-3 and docosapentaenoic acid (22:5n-3) in the phospholipids increased from 0.5 and 2.7 mol % in control cells to 23.2 and 9.7 mol %, respectively. When 20:5n-3-treated cells were stimulated with phenylephrine or endothelin-1, the inositolphosphate production decreased by 33.2% and increased by 43.4%, respectively, as compared to cells grown in control medium. No efffects were seen in 18:2n-6-treated cells. When 18:0/18:1n-9-treated cells were stimulated with endothelin-1, inositolphosphate formation increased by 26.4%, whereas phenylephrine-stimulated inositolphosphate formation was not affected. In saponin-permeabilized cells, that were pre-treated with 20:5n-3, the formation of total inositolphosphates after stimulation with GTPγS, in the presence of Ca2+, was inhibited 19.3%. This suggests that the 20:5n-3 effect on intact cardiomyocytes could be exerted either on the level of agonist-receptor, receptor-GTP-binding-protein coupling or GTP-binding-protein-PLC-β interaction. Investigation of the time course of saponin-induced permeabilization of the cardiomyocytes, measured by the release of lactate dehydrogenase, unmasked a slight decrease in the rate of permeabilization by 20:5n-3 pretreatment, indicating a protective effect. This led the authors to measure the cholesterol/phospholipid molar ratio, the double bond index of membrane phospholipids, and the membrane fluidity; the latter by using a diphenylhexatriene probe. In 20: 5n-3-pretreated cells, a strong increase in the cholesterol/phospholipid molar ratio (from 0.23 to 0.39), a marked increase in the double bond index (from 1.76 to 2.33), and a slight decrease in fluidity (steady-state anisotropy r(ss) of the diphenylhexatriene probe increased from 0.196 to 0.217) were observed. Thus, treatment of cardiomyocytes for 4 days with 20:5n-3, but not with 18:2n-6, causes alterations of receptor-mediated phospholipase Cβ activity. A causal relationship may exist between the 20:5 n-3-induced alterations of the physicochemical properties in the bilayer and of the agonist-stimulated phosphatidylinositol cycle activity

    Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines

    Get PDF
    Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines
    corecore