8,147 research outputs found

    Gravity and the Newtonian limit in the Randall-Sundrum model

    Get PDF
    We point out that the gravitational evolution equations in the Randall-Sundrum model appear in a different form than hitherto assumed. As a consequence, the model yields a correct Newtonian limit in a novel manner.Comment: 9 pages, LaTeX, sign changed and references added. We have also appended a remark on the compatibility of the 4D Poincare invariant metric of Randall and Sundrum with the boundary equation

    Operational parameters for the superconducting cavity maser

    Get PDF
    Tests of the superconducting cavity maser (SCM) ultra-stable frequency source have been made for the first time using a hydrogen maser for a frequency reference. In addition to characterizing the frequency stability, the sensitivity of the output frequency to several crucial parameters was determined for various operating conditions. Based on this determination, the refrigeration and thermal control systems of the SCM were modified. Subsequent tests showed substantially improved performance, especially at the longest averaging times

    Generalized modified gravity with the second order acceleration equation

    Full text link
    In the theories of generalized modified gravity, the acceleration equation is generally fourth order. So it is hard to analyze the evolution of the Universe. In this paper, we present a class of generalized modified gravity theories which have the acceleration equation of second order derivative. Then both the cosmic evolution and the weak-field limit of the theories are easily investigated. We find that not only the Big-bang singularity problem but also the current cosmic acceleration problem could be easily dealt with.Comment: 8 pages, 2 figures. To appear in Phys. Rev.

    Integrated care and the working record

    Get PDF
    By default, many discussions and specifications of electronic health records or integrated care records often conceptualize the record as a passive information repository. This article presents data from a case study of work in a medical unit in a major metropolitan hospital. It shows how the clinicians tailored, re-presented and augmented clinical information to support their own roles in the delivery of care for individual patients. This is referred to as the working record: a set of complexly interrelated clinician-centred documents that are locally evolved, maintained and used to support delivery of care in conjunction with the more patient-centred chart that will be stored in the medical records department on the patient’s discharge. Implications are drawn for how an integrated care record could support the local tailorability and flexibility that underpin this working record and hence underpin practice

    Calendar Year 2009 Report to the Rio Grande Compact Commission

    Get PDF

    Calendar Year 2010 Report to the Rio Grande Compact Commission

    Get PDF

    Calendar Year 2008 Report to the Rio Grande Compact Commission

    Get PDF

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661

    Optical excitations in hexagonal nanonetwork materials

    Full text link
    Optical excitations in hexagonal nanonetwork materials, for example, Boron-Nitride (BN) sheets and nanotubes, are investigated theoretically. The bonding of BN systems is positively polarized at the B site, and is negatively polarized at the N site. There is a permanent electric dipole moment along the BN bond, whose direction is from the B site to the N site. When the exciton hopping integral is restricted to the nearest neighbors, the flat band of the exciton appears at the lowest energy. The higher optical excitations have excitation bands similar to the electronic bands of graphene planes and carbon nanotubes. The symmetry of the flat exciton band is optically forbidden, indicating that the excitons related to this band will show quite long lifetime which will cause strong luminescence properties.Comment: 4 pages; 3 figures; proceedings of "XVIth International Winterschool on Electronic Properties of Novel Materials (IWEPNM2002)

    Superheavy dark matter and ultrahigh energy cosmic rays

    Full text link
    The phase of inflationary expansion in the early universe produces superheavy relics in a mass window between 10^{12} GeV and 10^{14} GeV. Decay or annihilation of these superheavy relics can explain the observed ultrahigh energy cosmic rays beyond the Greisen-Zatsepin-Kuzmin cutoff. We emphasize that the pattern of cosmic ray arrival directions with energies beyond 20 EeV will decide between the different proposals for the origin of ultrahigh energy cosmic rays.Comment: Based on an invited talk given by RD at Theory Canada 1, Vancouver, June 2-5, 200
    • …
    corecore