13 research outputs found

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Biofilm formation by ica positive and ica negative strains of Staphylococcus epidermidis in vitro

    No full text
    Staphylococcus epidermidis is a clinically important opportunistic pathogen that forms biofilm infections on nearly all types of indwelling medical devices. The biofilm forming capability of S. epidermidis has been linked to the presence of the ica operon in the genome, and the amount of biofilm formation measured by the crystal violet (CV) adherence assay. Six S. epidermidis strains were characterized for their ica status using PCR, and their biofilm forming ability over 6 days, using the CV assay and a flow cell system. Ica-negative strains characterized as 'negative for biofilm formation' based on the CV assay were demonstrated to form strongly attached biofilms after 6 days. However, the biofilms were not as extensive as the ica-positive strains. It was concluded that ica is not required for biofilm formation, nor is the 24-h CV assay generalizable for predicting the 6-day biofilm-forming ability for all S. epidermidis strain

    Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates

    Get PDF
    Background: Streptococcus pneumoniae is a common respiratory pathogen and a major causative agent of respiratory infections, including otitis media (OM). Pneumococcal biofilms have been demonstrated on biopsies of the middle ear mucosa in children receiving tympanostomy tubes, supporting the hypothesis that chronic OM may involve biofilm development by pathogenic bacteria as part of the infectious process. To better understand pneumococcal biofilm formation six low-passage encapsulated nasopharyngeal isolates of S. pneumoniae were assessed over a six-eight day period in vitro. Results: multiparametric analysis divided the strains into two groups. Those with a high biofilm forming index (BFI) were structurally complex, exhibited greater lectin colocalization and were more resistant to azithromycin. Those with a low BFI developed less extensive biofilms and were more susceptible to azithromycin. dsDNA was present in the S. pneumoniae biofilm matrix in all strains and treatment with DNase I significantly reduced biofilm biomass. Since capsule expression has been hypothesized to be associated with decreased biofilm development, we also examined expression of cpsA, the first gene in the pneumococcal capsule operon. Interestingly, cpsA was downregulated in biofilms in both high and low BFI strains. Conclusion: all pneumococcal strains developed biofilms that exhibited extracellular dsDNA in the biofilm matrix, however strains with a high BFI correlated with greater carbohydrate-associated structural complexity and antibiotic resistance. Furthermore, all strains of S. pneumoniae showed downregulation of the cpsA gene during biofilm growth compared to planktonic culture, regardless of BFI ranking, suggesting downregulation of capsule expression occurs generally during adherent growth

    Molecular and imaging techniques for bacterial biofilms in joint arthroplasty infections

    No full text
    Biofilm formation on surfaces is an ancient and integral strategy for bacterial survival. Billions of years of adaptation provide microbes with the ability to colonize any surface, including those used in orthopaedic surgery. Although remarkable progress has been made in the treatment of orthopaedic diseases with implanted prostheses, infection rates remain between 1% and 2%, and are higher for revision surgeries. The chronic nature of implant infections, their nonresponsiveness to antibiotics, and their frequent culture negativity can be explained by the biofilm paradigm of infectious disease. However, the role of biofilms in orthopaedic implant infections and aseptic loosening is controversial. To address these issues, we developed molecular diagnostic and confocal imaging techniques to identify and characterize biofilms associated with infected implants. We designed PCR and reverse transcription (RT)-PCR-based assays that can be used to detect bacterial infections associated with culture-negative joint effusions that distinguish between physiologically active Staphylococcus aureus and Staphylococcus epidermidis. Using clinical isolates of Pseudomonas aeruginosa, we constructed a series of reporter strains expressing colored fluorescent proteins to observe biofilms growing on 316L stainless steel and titanium orthopaedic screws. Three-dimensional structures of Pseudomonas aeruginosa and staphylococci biofilms growing on the screws were documented using confocal microscopy. The application of these tools for clinical diagnosis and biofilm research in animal and in vitro models is discussed

    Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media

    No full text
    CONTEXT: Chronic otitis media (OM) is a common pediatric infectious disease. Previous studies demonstrating that metabolically active bacteria exist in culture-negative pediatric middle-ear effusions and that experimental infection with Haemophilus influenzae in the chinchilla model of otitis media results in the formation of adherent mucosal biofilms suggest that chronic OM may result from a mucosal biofilm infection. OBJECTIVE: To test the hypothesis that chronic OM in humans is biofilm-related. DESIGN, SETTING, AND PATIENTS: Middle-ear mucosa (MEM) biopsy specimens were obtained from 26 children (mean age, 2.5 [range, 0.5-14] years) undergoing tympanostomy tube placement for treatment of otitis media with effusion (OME) and recurrent OM and were analyzed using microbiological culture, polymerase chain reaction (PCR)-based diagnostics, direct microscopic examination, fluorescence in situ hybridization, and immunostaining. Uninfected (control) MEM specimens were obtained from 3 children and 5 adults undergoing cochlear implantation. Patients were enrolled between February 2004 and April 2005 from a single US tertiary referral otolaryngology practice. MAIN OUTCOME MEASURES: Confocal laser scanning microscopic (CLSM) images were obtained from MEM biopsy specimens and were evaluated for biofilm morphology using generic stains and species-specific probes for H influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis. Effusions, when present, were evaluated by PCR and culture for evidence of pathogen-specific nucleic acid sequences and bacterial growth, respectively. RESULTS: Of the 26 children undergoing tympanostomy tube placement, 13 (50%) had OME, 20 (77%) had recurrent OM, and 7 (27%) had both diagnoses; 27 of 52 (52%) of the ears had effusions, 24 of 24 effusions were PCR-positive for at least 1 OM pathogen, and 6 (22%) of 27 effusions were culture-positive for any pathogen. Mucosal biofilms were visualized by CLSM on 46 (92%) of 50 MEM specimens from children with OME and recurrent OM using generic and pathogen-specific probes. Biofilms were not observed on 8 control MEM specimens obtained from the patients undergoing cochlear implantation. CONCLUSION: Direct detection of biofilms on MEM biopsy specimens from children with OME and recurrent OM supports the hypothesis that these chronic middle-ear disorders are biofilm-related

    Deletion of genes involved in the ketogluconate metabolism, Entner-Doudoroff pathway, and glucose dehydrogenase increase local and invasive virulence phenotypes in Streptococcus pneumoniae.

    No full text
    Streptococcus pneumoniae displays increased resistance to antibiotic therapy following biofilm formation. A genome-wide search revealed that SP 0320 and SP 0675 (respectively annotated as 5-keto-D-gluconate-5-reductase and glucose dehydrogenase) contain the highest degree of homology to CsgA of Myxococcus xanthus, a signaling factor that promotes cell aggregation and biofilm formation. Single and double SP 0320 and SP 0675 knockout mutants were created in strain BS72; however, no differences were observed in the biofilm-forming phenotypes of mutants compared to the wild type strain. Using the chinchilla model of otitis media and invasive disease, all three mutants exhibited greatly increased virulence compared to the wild type strain (increased pus formation, tympanic membrane rupture, mortality rates). The SP 0320 gene is located in an operon with SP 0317, SP 0318 and SP 0319, which we bioinformatically annotated as being part of the Entner-Doudoroff pathway. Deletion of SP 0317 also resulted in increased mortality in chinchillas; however, mutations in SP 0318 and SP 0319 did not alter the virulence of bacteria compared to the wild type strain. Complementing the SP 0317, SP 0320 and SP 0675 mutant strains reversed the virulence phenotype. We prepared recombinant SP 0317, SP 0318, SP 0320 and SP 0675 proteins and confirmed their functions. These data reveal that disruption of genes involved in the degradation of ketogluconate, the Entner-Doudoroff pathway, and glucose dehydrogenase significantly increase the virulence of bacteria in vivo; two hypothetical models involving virulence triggered by reduced in carbon-flux through the glycolytic pathways are presented

    Identification of Subtype C Human Immunodeficiency Virus Type 1 by Subtype-Specific PCR and Its Use in the Characterization of Viruses Circulating in the Southern Parts of India

    No full text
    Human immunodeficiency virus type 1 (HIV-1) subtype C viruses are associated with nearly half of worldwide HIV-1 infections and are most predominant in India and the southern and eastern parts of Africa. Earlier reports from India identified the preponderance of subtype C and a small proportion of subtype A viruses. Subsequent reports identifying multiple subtypes suggest new introductions and/or their detection due to extended screening. The southern parts of India constitute emerging areas of the epidemic, but it is not known whether HIV-1 infection in these areas is associated with subtype C viruses or is due to the potential new introduction of non-subtype C viruses. Here, we describe the development of a specific and sensitive PCR-based strategy to identify subtype C-viruses (C-PCR). The strategy is based on amplifying a region encompassing a long terminal repeat and gag in the first round, followed by two sets of nested primers; one amplifies multiple subtypes, while the other is specific to subtype C. The common HIV and subtype C-specific fragments are distinguishable by length differences in agarose gels and by the difference in the numbers of NF-κB sites encoded in the subtype C-specific fragment. We implemented this method to screen 256 HIV-1-infected individuals from 35 towns and cities in four states in the south and a city in the east. With the exception of single samples of subtypes A and B and a B/C recombinant, we found all to be infected with subtype C viruses, and the subtype assignments were confirmed in a subset by using heteroduplex mobility assays and phylogenetic analysis of sequences. We propose the use of C-PCR to facilitate rapid molecular epidemiologic characterization to aid vaccine and therapeutic strategies

    Characterization, Distribution, and Expression of Novel Genes among Eight Clinical Isolates of Streptococcus pneumoniae

    No full text
    Eight low-passage-number Streptococcus pneumoniae clinical isolates, each of a different serotype and a different multilocus sequence type, were obtained from pediatric participants in a pneumococcal vaccine trial. Comparative genomic analyses were performed with these strains and two S. pneumoniae reference strains. Individual genomic libraries were constructed for each of the eight clinical isolates, with an average insert size of ∼1 kb. A total of 73,728 clones were picked for arraying, providing more than four times genomic coverage per strain. A subset of 4,793 clones were sequenced, for which homology searches revealed that 750 (15.6%) of the sequences were unique with respect to the TIGR4 reference genome and 263 (5.5%) clones were unrelated to any available streptococcal sequence. Hypothetical translations of the open reading frames identified within these novel sequences showed homologies to a variety of proteins, including bacterial virulence factors not previously identified in S. pneumoniae. The distribution and expression patterns of 58 of these novel sequences among the eight clinical isolates were analyzed by PCR- and reverse transcriptase PCR-based analyses, respectively. These unique sequences were nonuniformly distributed among the eight isolates, and transcription of these genes in planktonic cultures was detected in 81% (172/212) of their genic occurrences. All 58 novel sequences were transcribed in one or more of the clinical strains, suggesting that they all correspond to functional genes. Sixty-five percent (38/58) of these sequences were found in 50% or less of the clinical strains, indicating a significant degree of genomic plasticity among natural isolates
    corecore