14 research outputs found
A Survey on Face Analysis and Its Applications (Face Recognition & Facial Age Estimation)
Face Recognition is a widely used research area that is being carried out by researchers in order to use it in different areas. The reason is its sole importance in a number of applications like face detection in crime scenes by the videos of the CCTV cameras, biometrics, authentication in customer relationship etc. A problem that arises in face recognition is that because of complex features like wrinkles, facial expressions, aging, the face of a person is sometimes not recognized by the system. If a fine approach is achieved which can estimate the correct age of a person despite of the aging factors which affect the image, then most of the problems in the face recognition would be solved. This review paper provides a detailed survey of the various state of art techniques of age estimation which are helpful in face recognition
Automatic 3D facial expression recognition using geometric and textured feature fusion
3D facial expression recognition has gained more and more interests from affective computing society due to issues such as pose variations and illumination changes caused by 2D imaging having been eliminated. There are many applications that can benefit from this research, such as medical applications involving the detection of pain and psychological effects in patients, in human-computer interaction tasks that intelligent systems use in today's world. In this paper, we look into 3D Facial Expression Recognition, by investigating many feature extraction methods used on the 2D textured images and 3D geometric data, fusing the 2 domains to increase the overall performance. A One Vs All Multi-class SVM Classifier has been adopted to recognize the expressions Angry, Disgust, Fear, Happy, Neutral, Sad and Surprise from the BU-3DFE and Bosphorus databases. The proposed approach displays an increase in performance when the features are fused together
3D Facial landmark detection under large yaw and expression variations
A 3D landmark detection method for 3D facial scans is presented and thoroughly evaluated. The main contribution of the presented method is the automatic and pose-invariant detection of landmarks on 3D facial scans under large yaw variations (that often result in missing facial data), and its robustness against large facial expressions. Three-dimensional information is exploited by using 3D local shape descriptors to extract candidate landmark points. The shape descriptors include the shape index, a continuous map of principal curvature values of a 3D object’s surface, and spin images, local descriptors of the object’s 3D point distribution. The candidate landmarks are identified and labeled by matching them with a Facial Landmark Model (FLM) of facial anatomical landmarks. The presented method is extensively evaluated against a variety of 3D facial databases and achieves state-of-the-art accuracy (4.5-6.3 mm mean landmark localization error), considerably outperforming previous methods, even when tested with the most challenging data
3D Face Recognition Benchmarks on the Bosphorus Database with Focus on Facial Expressions
This paper presents an evaluation of several 3D face recognizers on the Bosphorus database, which was gathered for studies on expression and pose invariant face analysis. We provide identification results of three 3D face recognition algorithms, namely generic face template based ICP approach, one-to-all ICP approach, and depth image-based Principal Component Analysis (PCA) method. All of these techniques treat faces globally and are usually accepted as baseline approaches. In addition, 2D texture classifiers are also incorporated in a fusion setting. Experimental results reveal that even though global shape classifiers achieve almost perfect identification in neutral-to-neutral comparisons, they are sub-optimal under extreme expression variations. We show that it is possible to boost the identification accuracy by focusing on the rigid facial regions and by fusing complementary information coming from shape and texture modalities
OPTIMIZED BIOMETRIC SYSTEM BASED ON COMBINATION OF FACE IMAGES AND LOG TRANSFORMATION
The biometrics are used to identify a person effectively. In this paper, we propose optimised Face
recognition system based on log transformation and combination of face image features vectors. The face
images are preprocessed using Gaussian filter to enhance the quality of an image. The log transformation
is applied on enhanced image to generate features. The feature vectors of many images of a single person
image are converted into single vector using average arithmetic addition. The Euclidian distance(ED) is
used to compare test image feature vector with database feature vectors to identify a person. It is
experimented that, the performance of proposed algorithm is better compared to existing algorithms
カメラ画像を用いたディープラーニングによる被写人物の年齢推定
東京都市大学2022年度(令和4年
A novel facial action intensity detection system
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. October 2014.Despite the fact that there has been quite a lot of research done in the eld of facial
expression recognition, not much development has occurred in detecting the intensity
of facial actions. In facial expression recognition, the intensity of facial actions is an
important and crucial aspect, since it would provide more information about the facial
expression of an individual, such as the level of emotion in a face. Furthermore, having
an automated system that can detect the intensity of facial actions in an individual's
face can lead up to a lot of potential applications from lie detection to smart classrooms.
The provided approach includes robust methods for face and facial feature extraction,
and multiple machine learning methods for facial action intensity detection
Mechanical harvesting, fruit and oil quality in olives influenced by harvest time and exogenous application of ethylene
Effects of fruit growth and development, different harvesting times, concentration and time of ethephon application on facilitating mechanical harvesting and oil quality of ‘Frantoio’ and ‘Manzanilla’ olives grown in south-western Australia were investigated during 2013 - 2014. Harvesting in late-May to mid-June or an exogenous spray of ethephon (1000 – 1500 mg L-1) two weeks before harvest facilitates mechanical harvesting and excellent physical, biochemical and sensory attributes of fruit and virgin olive oil in both cultivars
Registration and statistical analysis of the tongue shape during speech production
This thesis analyzes the human tongue shape during speech production. First, a semi-supervised approach is derived for estimating the tongue shape from volumetric magnetic resonance imaging data of the human vocal tract. Results of this extraction are used to derive parametric tongue models. Next, a framework is presented for registering sparse motion capture data of the tongue by means of such a model. This method allows to generate full three-dimensional animations of the tongue. Finally, a multimodal and statistical text-to-speech system is developed that is able to synthesize audio and synchronized tongue motion from text.Diese Dissertation beschäftigt sich mit der Analyse der menschlichen Zungenform während der Sprachproduktion. Zunächst wird ein semi-überwachtes Verfahren vorgestellt, mit dessen Hilfe sich Zungenformen von volumetrischen Magnetresonanztomographie- Aufnahmen des menschlichen Vokaltrakts schätzen lassen. Die Ergebnisse dieses Extraktionsverfahrens werden genutzt, um ein parametrisches Zungenmodell zu konstruieren. Danach wird eine Methode hergeleitet, die ein solches Modell nutzt, um spärliche Bewegungsaufnahmen der Zunge zu registrieren. Dieser Ansatz erlaubt es, dreidimensionale Animationen der Zunge zu erstellen. Zuletzt wird ein multimodales und statistisches Text-to-Speech-System entwickelt, das in der Lage ist, Audio und die dazu synchrone Zungenbewegung zu synthetisieren.German Research Foundatio
Contributions à l'analyse de visages en 3D (approche régions, approche holistique et étude de dégradations)
Historiquement et socialement, le visage est chez l'humain une modalité de prédilection pour déterminer l'identité et l'état émotionnel d'une personne. Il est naturellement exploité en vision par ordinateur pour les problèmes de reconnaissance de personnes et d'émotions. Les algorithmes d'analyse faciale automatique doivent relever de nombreux défis : ils doivent être robustes aux conditions d'acquisition ainsi qu'aux expressions du visage, à l'identité, au vieillissement ou aux occultations selon le scénario. La modalité 3D a ainsi été récemment investiguée. Elle a l'avantage de permettre aux algorithmes d'être, en principe, robustes aux conditions d'éclairage ainsi qu'à la pose. Cette thèse est consacrée à l'analyse de visages en 3D, et plus précisément la reconnaissance faciale ainsi que la reconnaissance d'expressions faciales en 3D sans texture. Nous avons dans un premier temps axé notre travail sur l'apport que pouvait constituer une approche régions aux problèmes d'analyse faciale en 3D. L'idée générale est que le visage, pour réaliser les expressions faciales, est déformé localement par l'activation de muscles ou de groupes musculaires. Il est alors concevable de décomposer le visage en régions mimiques et statiques, et d'en tirer ainsi profit en analyse faciale. Nous avons proposé une paramétrisation spécifique, basée sur les distances géodésiques, pour rendre la localisation des régions mimiques et statiques le plus robustes possible aux expressions. Nous avons également proposé une approche régions pour la reconnaissance d'expressions du visage, qui permet de compenser les erreurs liées à la localisation automatique de points d'intérêt. Les deux approches proposées dans ce chapitre ont été évaluées sur des bases standards de l'état de l'art. Nous avons également souhaité aborder le problème de l'analyse faciale en 3D sous un autre angle, en adoptant un système de cartes de représentation de la surface 3D. Nous avons ainsi proposé de projeter sur le plan 2D des informations liées à la topologie de la surface 3D, à l'aide d'un descripteur géométrique inspiré d'une mesure de courbure moyenne. Les problèmes de reconnaissance faciale et de reconnaissance d'expressions 3D sont alors ramenés à ceux de l'analyse faciale en 2D. Nous avons par exemple utilisé SIFT pour l'extraction puis l'appariement de points d'intérêt en reconnaissance faciale. En reconnaissance d'expressions, nous avons utilisé une méthode de description des visages basée sur les histogrammes de gradients orientés, puis classé les expressions à l'aide de SVM multi-classes. Dans les deux cas, une méthode de fusion simple permet l'agrégation des résultats obtenus à différentes échelles. Ces deux propositions ont été évaluées sur la base BU-3DFE, montrant de bonnes performances tout en étant complètement automatiques. Enfin, nous nous sommes intéressés à l'impact des dégradations des modèles 3D sur les performances des algorithmes d'analyse faciale. Ces dégradations peuvent avoir plusieurs origines, de la capture physique du visage humain au traitement des données en vue de leur interprétation par l'algorithme. Après une étude des origines et une théorisation des types de dégradations potentielles, nous avons défini une méthodologie permettant de chiffrer leur impact sur des algorithmes d'analyse faciale en 3D. Le principe est d'exploiter une base de données considérée sans défauts, puis de lui appliquer des dégradations canoniques et quantifiables. Les algorithmes d'analyse sont alors testés en comparaison sur les bases dégradées et originales. Nous avons ainsi comparé le comportement de 4 algorithmes de reconnaissance faciale en 3D, ainsi que leur fusion, en présence de dégradations, validant par la diversité des résultats obtenus la pertinence de ce type d'évaluation.Historically and socially, the human face is one of the most natural modalities for determining the identity and the emotional state of a person. It has been exploited by computer vision scientists within the automatic facial analysis domain. Still, proposed algorithms classically encounter a number of shortcomings. They must be robust to varied acquisition conditions. Depending on the scenario, they must take into account intra-class variations such as expression, identity (for facial expression recognition), aging, occlusions. Thus, the 3D modality has been suggested as a counterpoint for a number of those issues. In principle, 3D views of an object are insensitive to lightning conditions. They are, theoretically, pose-independant as well. The present thesis work is dedicated to 3D Face Analysis. More precisely, it is focused on non-textured 3D Face Recognition and 3D Facial Expression Recognition. In the first instance, we have studied the benefits of a region-based approach to 3D Face Analysis problems. The general concept is that a face, when performing facial expressions, is deformed locally by the activation of muscles or groups of muscles. We then assumed that it was possible to decompose the face into several regions of interest, assumed to be either mimic or static. We have proposed a specific facial surface parametrization, based upon geodesic distance. It is designed to make region localization as robust as possible regarding expression variations. We have also used a region-based approach for 3D facial expression recognition, which allows us to compensate for errors relative to automatic landmark localization. We also wanted to experiment with a Representation Map system. Here, the main idea is to project 3D surface topology data on the 2D plan. This translation to the 2D domain allows us to benefit from the large amount of related works in the litterature. We first represent the face as a set of maps representing different scales, with the help of a geometric operator inspired by the Mean Curvature measure. For Facial Recognition, we perform a SIFT keypoints extraction. Then, we match extracted keypoints between corresponding maps. As for Facial Expression Recognition, we normalize and describe every map thanks to the Histograms of Oriented Gradients algorithm. We further classify expressions using multi-class SVM. In both cases, a simple fusion step allows us to aggregate the results obtained on every single map. Finally, we have studied the impact of 3D models degradations over the performances of 3D facial analysis algorithms. A 3D facial scan may be an altered representation of its real life model, because of several reasons, which range from the physical caption of the human model to data processing. We propose a methodology that allows us to quantify the impact of every single type of degradation over the performances of 3D face analysis algorithms. The principle is to build a database regarded as free of defaults, then to apply measurable degradations to it. Algorithms are further tested on clean and degraded datasets, which allows us to quantify the performance loss caused by degradations. As an experimental proof of concept, we have tested four different algorithms, as well as their fusion, following the aforementioned protocol. With respect to the various types of contemplated degradations, the diversity of observed behaviours shows the relevance of our approach.LYON-Ecole Centrale (690812301) / SudocSudocFranceF