504 research outputs found

    Impact of enzymatic and microbial bioprocessing on antioxidant properties of hemp (Cannabis sativa L.)

    Get PDF
    Although the hemp seed boasts high nutritional and functional potential, its use in food preparations is still underestimated due to scarce technological properties and the presence of several anti-nutritional factors. Here, an optimization of a biotechnological protocol aimed at improving the antioxidant properties and the protein digestibility of the whole hemp seed has been proposed. Processing based on the use of commercial food grade enzymes and ad hoc selected lactic acid bacteria was tested and the phenolic and protein profiles were investigated through an integrated approach including selective extraction, purification, and identification of the potentially active compounds. The influence of the bioprocessing on the antioxidant activity of the hemp was evaluated both in vitro and on human keratinocytes. The lactic acid bacteria fermentation was the best method to significantly improve the antioxidant potential of the hemp through intense proteolysis which led to both the release of bioactive peptides and the increase in the protein digestibility. Moreover, changes in the phenolic profile allowed a significant protective effect against oxidative stress measured on the human keratinocyte cell line

    Bioprocessing of Brewers’ Spent Grain Enhances Its Antioxidant Activity: Characterization of Phenolic Compounds and Bioactive Peptides

    Get PDF
    Brewers’ spent grain (BSG) is the major by-product of the brewing industry which remain largely unutilized despite its nutritional quality. In this study, the effects of fermentation on BSG antioxidant potential were analyzed. A biotechnological protocol including the use of xylanase followed by fermentation with Lactiplantibacillus plantarum (Lactobacillus plantarum) PU1, PRO17, and H46 was used. Bioprocessed BSG exhibited enhanced antioxidant potential, characterized by high radical scavenging activity, long-term inhibition of linoleic acid oxidation and protective effect toward oxidative stress on human keratinocytes NCTC 2544. Immunolabelling and confocal laser microscopy showed that xylanase caused an extensive cell wall arabinoxylan disruption, contributing to the release of bound phenols molecules, thus available to further conversion through lactic acid bacteria metabolism. To clarify the role of fermentation on the antioxidant BSG potential, phenols were selectively extracted and characterized through HPLC-MS techniques. Novel antioxidant peptides were purified and identified in the most active bioprocessed BSG

    Active immunotherapy in the treatment of haematological neoplasias

    Get PDF
    Abstract The continuous search for therapeutic approaches that improve the conventional treatments of neoplasms, together with an improved understanding of the immune system, has led in recent years to the development of Immunotherapy. Basically, a distinction can be made between two forms of immunotherapy: passive immunotherapy, which consists in the transfer of antibodies or cells previously generated in vitro that are directed against the tumour, and active immunotherapy, which attempts to activate in vivo the immune system and induce it to elaborate a specific response against the tumor antibodies. Hematological neoplasms, specifically some B lymphomas, express in their membrane an immunoglobulin that is considered a specific antigen of the tumour, which is why these diseases have become the ideal target for immunotherapy treatments. There are many alternatives, ranging from protein vaccines, which have already shown clinical benefits, to those of the second generation, which make use of the new techniques of molecular biology to increase the efficacy of the vaccines and obtain their production in a quicker and less costly way, but with which there are not yet definitive clinical results

    Acquired potential N-glycosylation sites within the tumor-specific immunoglobulin heavy chains of B-cell malignancies

    Get PDF
    Background and Objectives. Among B-cell malignancies, follicular lymphomas (FL) more frequently show acquired, potential N-glycosylation sites (AGS) within tumor-specific immunoglobulin. The aim of this study was to extend this observation and to evaluate the pattern of presentation of AGS within five different forms of B-cell lymphoma. Design and Methods. We sequenced the tumor-specific immunoglobulin heavy chain variable region fragment, including complementarity-determining regions 2 and 3, of forty-seven consecutive patients with a B-cell malignancy enrolled in idiotype vaccine clinical trials. This sequencing approach is known to allow the identification of most AGS. We then statistically analyzed differences in presentation pattern, in terms of tumor histology, immunoglobulin isotype, AGS location and amino acid composition. Results. All twenty-four FL cases presented with at least one AGS, whereas the vast majority of four B-cell lymphoma types other than FL did not. The non- FL group of tumors included four cases of Burkitt’s lymphoma, six of diffuse large cell lymphoma, seven mantle cell lymphomas and six small lymphocytic lymphomas. Most IgM-bearing follicular lymphoma cases featured their AGS within complementarity-determining region 2, as opposed to those bearing an IgG, which mostly displayed the AGS within complementarity- determining region 3. The vast majority of AGS located within either complementarity- determining region ended with a serine residue, whereas those located within framework regions mostly featured threonine as the last amino acid residue. Interpretation and Conclusions. In our series, all cases of FL had AGS within their tumor-specific immunoglobulin heavy chain variable regions. In contrast, most B-cell malignancies other than FL did not. Further studies are warranted in order to establish the possible meaning of these findings in terms of disease pathogenesis, their diagnostic value in doubtful cases and their potential implications for immunotherapy

    Optimization of universal allogeneic CAR-T cells combining CRISPR and transposon-based technologies for treatment of acute myeloid leukemia

    Get PDF
    Despite the potential of CAR-T therapies for hematological malignancies, their efficacy in patients with relapse and refractory Acute Myeloid Leukemia has been limited. The aim of our study has been to develop and manufacture a CAR-T cell product that addresses some of the current limitations. We initially compared the phenotype of T cells from AML patients and healthy young and elderly controls. This analysis showed that T cells from AML patients displayed a predominantly effector phenotype, with increased expression of activation (CD69 and HLA-DR) and exhaustion markers (PD1 and LAG3), in contrast to the enriched memory phenotype observed in healthy donors. This differentiated and more exhausted phenotype was also observed, and corroborated by transcriptomic analyses, in CAR-T cells from AML patients engineered with an optimized CAR construct targeting CD33, resulting in a decreased in vivo antitumoral efficacy evaluated in xenograft AML models. To overcome some of these limitations we have combined CRISPR-based genome editing technologies with virus-free gene-transfer strategies using Sleeping Beauty transposons, to generate CAR-T cells depleted of HLA-I and TCR complexes (HLA-IKO/TCRKO CAR-T cells) for allogeneic approaches. Our optimized protocol allows one-step generation of edited CAR-T cells that show a similar phenotypic profile to non-edited CAR-T cells, with equivalent in vitro and in vivo antitumoral efficacy. Moreover, genomic analysis of edited CAR-T cells revealed a safe integration profile of the vector, with no preferences for specific genomic regions, with highly specific editing of the HLA-I and TCR, without significant off-target sites. Finally, the production of edited CAR-T cells at a larger scale allowed the generation and selection of enough HLA-IKO/TCRKO CAR-T cells that would be compatible with clinical applications. In summary, our results demonstrate that CAR-T cells from AML patients, although functional, present phenotypic and functional features that could compromise their antitumoral efficacy, compared to CAR-T cells from healthy donors. The combination of CRISPR technologies with transposon-based delivery strategies allows the generation of HLA-IKO/TCRKO CAR-T cells, compatible with allogeneic approaches, that would represent a promising option for AML treatment

    A randomized phase II clinical trial of dendritic cell vaccination following complete resection of colon cancer liver metastasis

    Get PDF
    Surgically resectable synchronic and metachronic liver metastases of colon cancer have high risk of relapse in spite of standard-of-care neoadjuvant and adjuvant chemotherapy regimens. Dendritic cell vaccines loaded with autologous tumor lysates were tested for their potential to avoid or delay disease relapses (NCT01348256). Patients with surgically amenable liver metastasis of colon adenocarcinoma (n = 19) were included and underwent neoadjuvant chemotherapy, surgery and adjuvant chemotherapy. Fifteen patients with disease-free resection margins were randomized 1:1 to receive two courses of four daily doses of dendritic cell intradermal vaccinations versus observation. The trial had been originally designed to include 56 patients but was curtailed due to budgetary restrictions. Follow-up of the patients indicates a clear tendency to fewer and later relapses in the vaccine arm (median disease free survival –DFS-) 25.26 months, 95% CI 8. 74-n.r) versus observation arm (median DFS 9.53 months, 95% CI 5.32–18.88)

    Pasado, presente y futuro de la vacunación anti-idiotipo

    Get PDF
    Cancer vaccines are conceived as therapeutic tools, in contrast to the prophylactic vaccines used to fight against infectious diseases. Among the most potent therapeutic vaccines, anti-idiotype vaccination is directed against the tumor idiotype, the only well-characterized tumor antigen displayed in neoplastic B-cells. Anti-idiotype vaccines have demonstrated clinical benefit against follicular lymphoma and are currently being evaluated in two different phase III clinical trials. Additional emerging strategies, which include the use of dendritic cells and the production of vaccines via molecular means will surely allow us to draw important conclusions concerning the treatment of cancer patients

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore