17 research outputs found

    The Effect of Tamoxifen and Raloxifene on Estrogen Metabolism and Endometrial Cancer Risk

    Get PDF
    Selective estrogen receptor modulators (SERMs) demonstrate differential endometrial cancer (EC) risk. While tamoxifen (TAM) use increases the risk of endometrial hyperplasia and malignancy, raloxifene (RAL) has neutral effects on the uterus. How TAM increases the risk of EC and why TAM and RAL differentially modulate the risk for EC, however, remain elusive. Here, we tested the hypothesis that TAM increases the risk for EC, at least in part, by enhancing the local estrogen biosynthesis and directing estrogen metabolism towards the formation of genotoxic and hormonally active estrogen metabolites. In addition, the differential effects of TAM and RAL in EC risk are attributed to their differential effect on estrogen metabolism/metabolites. The endometrial cancer cell line (Ishikawa cells) and the nonmalignant immortalized human endometrial glandular cell line (EM1) were used for the study. The profile of estrogen/estrogen metabolites (EM), depurinating estrogen-DNA adducts, and the expression of estrogen-metabolizing enzymes in cells treated with 17β-estradiol (E2) alone or in combination with TAM or RAL were investigated using high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS(2)), ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), and Western blot analysis, respectively. TAM significantly increased the total EM and enhanced the formation of hormonally active and carcinogenic estrogen metabolites, 4-hydroxestrone (4-OHE1) and 16α-hydroxyestrone, with concomitant reduction in the formation of antiestrogenic and anticarcinogenic 2-hydroxyestradiol and 2-methoxyestradiol. Furthermore, TAM increased the formation of depurinating estrogen-DNA adducts 4-OHE1 [2]-1-N7Guanine and 4-OHE1 [2]-1-N3 Adenine. TAM-induced alteration in EM and depurinating DNA adduct formation is associated with altered expression of estrogen metabolizing enzymes CYP1A1, CYP1B1, COMT, NQO1, and SF-1 as revealed by Western blot analysis. In contrast to TAM, RAL has minimal effect on EM, estrogen-DNA adduct formation, or estrogen-metabolizing enzymes expression. These data show that TAM perturbs the balance of estrogen-metabolizing enzymes and alters the disposition of estrogen metabolites, which can explain, at least in part, the mechanism for TAM-induced EC. These results also implicate the differential effect of TAM and RAL on estrogen metabolism/metabolites as a potential mechanism for their disparate effects on the endometrium

    Catechol-O-Methyltransferase Expression and 2-Methoxyestradiol Affect Microtubule Dynamics and Modify Steroid Receptor Signaling in Leiomyoma Cells

    Get PDF
    CONTEXT: Development of optimal medicinal treatments of uterine leiomyomas represents a significant challenge. 2-Methoxyestradiol (2ME) is an endogenous estrogen metabolite formed by sequential action of CYP450s and catechol-O-methyltransferase (COMT). Our previous study demonstrated that 2ME is a potent antiproliferative, proapoptotic, antiangiogenic, and collagen synthesis inhibitor in human leiomyomas cells (huLM). OBJECTIVES: Our objectives were to investigate whether COMT expression, by the virtue of 2ME formation, affects the growth of huLM, and to explore the cellular and molecular mechanisms whereby COMT expression or treatment with 2ME affect these cells. RESULTS: Our data demonstrated that E(2)-induced proliferation was less pronounced in cells over-expressing COMT or treated with 2ME (500 nM). This effect on cell proliferation was associated with microtubules stabilization and diminution of estrogen receptor alpha (ERalpha) and progesterone receptor (PR) transcriptional activities, due to shifts in their subcellular localization and sequestration in the cytoplasm. In addition, COMT over expression or treatment with 2ME reduced the expression of hypoxia-inducible factor -1alpha (HIF-1 alpha) and the basal level as well as TNF-alpha-induced aromatase (CYP19) expression. CONCLUSIONS: COMT over expression or treatment with 2ME stabilize microtubules, ameliorates E(2)-induced proliferation, inhibits ERalpha and PR signaling, and reduces HIF-1 alpha and CYP19 expression in human uterine leiomyoma cells. Thus, microtubules are a candidate target for treatment of uterine leiomyomas. In addition, the naturally occurring microtubule-targeting agent 2ME represents a potential new therapeutic for uterine leiomyomas

    Prognostic Significance of Peritumoral Lymphatic Vessel Density and Vascular Endothelial Growth Factor Receptor 3 in Invasive Squamous Cell Cervical Cancer

    Get PDF
    Cervical cancer is known to metastasize primarily by the lymphatic system. Dissemination through lymphatic vessels represents an early step in regional tumor progression, and the presence of lymphatic metastasis is associated with a poor prognosis. In patients who have undergone a radical hysterectomy, lymphovascular space invasion (LVSI), assessed on hematoxylin and eosin-stained slides, is a major factor for adjuvant therapy in patients with cervical cancer. With the advent of a lymphatic endothelial cell-specific marker, such as D2-40, it is now possible to distinguish between blood and lymphatic space invasion (LSI). In this study, the utility of D2-40 was assessed for the detection of lymphatic vessel density (LVD) and identification of LSI. The expressions of vascular endothelial growth factor receptor-3 (VEGFR-3), VEGF-C, tyrosine receptor kinase-2, and angiopoietin-1 were assessed by immunohistochemical methods on 50 patients with squamous cell carcinoma of the cervix. Clinicopathologic characteristics, including pelvic lymph node metastasis, were correlated with the above histochemical findings. We found that lymphangiogenesis, measured by an increase in peritumoral LVD, was significantly associated with positive lymph node status (P < .005). VEGFR-3 expression was significantly associated with LVD (P < .05). D2-40 staining verified LSI (P = .03) and surpassed that of hematoxylin and eosin-identified LVSI (P = .54). In conclusion, lymphangiogenic markers, specifically LVD quantified by D2-40 and VEGFR-3, are independently associated with LSI and lymph node metastasis in patients with early squamous cell carcinoma of the cervix treated with radical hysterectomy and pelvic lymphadenectomy

    Effect of COMT expression or treatment with 2ME (500 nM) on basal and hypoxia-induced HIF-1α protein levels in huLM.

    No full text
    <p>(A) Western blot analysis of basal level of HIF-1α in whole cell extracts from huLM<sup>W</sup>; huLM <sup>2-ME</sup>, huLM-COMT<sup>KD</sup>, and huLM-COMT.<sup>KI</sup> (B) HIF-1α level in huLM<sup>W</sup>; huLM <sup>2ME</sup>; huLM-COMT<sup>KD</sup>; and huLM-COMT<sup>KI</sup> incubated for 8 h with CoCl2 (100 µM).</p
    corecore