1,520 research outputs found

    Consistent Batalin--Fradkin quantization of Infinitely Reducible First Class Constraints

    Full text link
    We reconsider the problem of BRST quantization of a mechanics with infinitely reducible first class constraints. Following an earlier recipe [Phys. Lett. B 381, 105, (1996)], the original phase space is extended by purely auxiliary variables, the constraint set in the enlarged space being first stage of reducibility. The BRST charge involving only a finite number of ghost variables is explicitly constructed.Comment: 5 pages, LaTex. Minor corrections including the title. The version to appear in Phys. Rev.

    On the Transverse-Traceless Projection in Lattice Simulations of Gravitational Wave Production

    Full text link
    It has recently been pointed out that the usual procedure employed in order to obtain the transverse-traceless (TT) part of metric perturbations in lattice simulations was inconsistent with the fact that those fields live in the lattice and not in the continuum. It was claimed that this could lead to a larger amplitude and a wrong shape for the gravitational wave (GW) spectra obtained in numerical simulations of (p)reheating. In order to address this issue, we have defined a consistent prescription in the lattice for extracting the TT part of the metric perturbations. We demonstrate explicitly that the GW spectra obtained with the old continuum-based TT projection only differ marginally in amplitude and shape with respect to the new lattice-based ones. We conclude that one can therefore trust the predictions appearing in the literature on the spectra of GW produced during (p)reheating and similar scenarios simulated on a lattice.Comment: 22 pages, 8 figures, Submitted to JCA

    H^+H^- Pair Production at the Large Hadron Collider

    Get PDF
    We study the pair production of charged Higgs bosons at the CERN Large Hadron Collider in the context of the minimal supersymmetric extension of the standard model. We compare the contributions due to qq-bar annihilation at the tree level and gg fusion, which proceeds at one loop. At small or large values of tan(beta), H^+H^- production proceeds dominantly via bb-bar annihilation, due to Feynman diagrams involving neutral CP-even Higgs bosons and top quarks, which come in addition to the usually considered Drell-Yan diagrams. In the case of gg fusion, the squark loop contributions may considerably enhance the well-known quark loop contributions.Comment: 15 pages (Latex), 4 figures (Postscript

    Charged and Pseudoscalar Higgs production at a Muon Collider

    Get PDF
    We consider single charged Higgs (H±H^{\pm}) and pseudoscalar Higgs (A0A^0) production in association with a gauge boson at ÎŒ+Ό−\mu^+\mu^- colliders. We find that the tree-level t-channel and s-channel contributions to ÎŒ+Ό−→H±W∓,A0Z\mu^+\mu^-\to H^{\pm}W^{\mp}, A^0Z are enhanced for large values of tan⁥ÎČ\tan\beta, allowing sizeable cross-sections whose analogies at e+e−e^+e^- colliders would be very small. These processes provide attractive new ways of producing such particles at ÎŒ+Ό−\mu^+\mu^- colliders and are superior to the conventional methods in regions of parameter space.Comment: 11 pages Latex, 5 figures, formulae added in sections 2.2 and 2.3, extra discussion in section 2.3, references adde

    Propagators and WKB-exactness in the plane wave limit of AdSxS

    Full text link
    Green functions for the scalar, spinor and vector fields in a plane wave geometry arising as a Penrose limit of AdS×SAdS\times S are obtained. The Schwinger-DeWitt technique directly gives the results in the plane wave background, which turns out to be WKB-exact. Therefore the structural similarity with flat space results is unveiled. In addition, based on the local character of the Penrose limit, it is claimed that for getting the correct propagators in the limit one can rely on the first terms of the direct geodesic contribution in the Schwinger-DeWitt expansion of the original propagators . This is explicitly shown for the Einstein Static Universe, which has the same Penrose limit as AdS×SAdS\times S with equal radii, and for a number of other illustrative cases.Comment: 18 pages, late

    Electroweak Corrections to the Charged Higgs Boson Decay into Chargino and Neutralino

    Full text link
    The electroweak corrections to the partial widths of the H+→χ~i+χ~j0(i=1,j=1,2)H^+ \to \tilde{\chi}^+_i \tilde{\chi}_j^0 (i=1,j=1,2) decays including one-loop diagrams of the third generation quarks and squarks, are investigated within the Supersymmetric Standard Model. The relative corrections can reach the values about 10%, therefore they should be taken into account for the precise experimental measurement at future colliders.Comment: 21 pages, 6 eps figures, 1 Latex fil

    Cosmic Acceleration in Brans-Dicke Cosmology

    Full text link
    We consider Brans-Dicke theory with a self-interacting potential in Einstein conformal frame. We show that an accelerating expansion is possible in a spatially flat universe for large values of the Brans-Dicke parameter consistent with local gravity experiments.Comment: 10 Pages, 3 figures, To appear in General Relativity and Gravitatio

    Semiparametric theory and empirical processes in causal inference

    Full text link
    In this paper we review important aspects of semiparametric theory and empirical processes that arise in causal inference problems. We begin with a brief introduction to the general problem of causal inference, and go on to discuss estimation and inference for causal effects under semiparametric models, which allow parts of the data-generating process to be unrestricted if they are not of particular interest (i.e., nuisance functions). These models are very useful in causal problems because the outcome process is often complex and difficult to model, and there may only be information available about the treatment process (at best). Semiparametric theory gives a framework for benchmarking efficiency and constructing estimators in such settings. In the second part of the paper we discuss empirical process theory, which provides powerful tools for understanding the asymptotic behavior of semiparametric estimators that depend on flexible nonparametric estimators of nuisance functions. These tools are crucial for incorporating machine learning and other modern methods into causal inference analyses. We conclude by examining related extensions and future directions for work in semiparametric causal inference

    P-wave excited baryons from pion- and photo-induced hyperon production

    Full text link
    We report evidence for N(1710)P11N(1710)P_{11}, N(1875)P11N(1875)P_{11}, N(1900)P13N(1900)P_{13}, Δ(1600)P33\Delta(1600)P_{33}, Δ(1910)P31\Delta(1910)P_{31}, and Δ(1920)P33\Delta(1920)P_{33}, and find indications that N(1900)P13N(1900)P_{13} might have a companion state at 1970\,MeV. The controversial Δ(1750)P31\Delta(1750)P_{31} is not seen. The evidence is derived from a study of data on pion- and photo-induced hyperon production, but other data are included as well. Most of the resonances reported here were found in the Karlsruhe-Helsinki (KH84) and the Carnegie-Mellon (CM) analyses but were challenged recently by the Data Analysis Center at GWU. Our analysis is constrained by the energy independent πN\pi N scattering amplitudes from either KH84 or GWU. The two πN\pi N amplitudes from KH84 or GWU, respectively, lead to slightly different πN\pi N branching ratios of contributing resonances but the debated resonances are required in both series of fits.Comment: 22 pages, 28 figures. Some additional sets of data are adde

    Tight-binding parameters for charge transfer along DNA

    Full text link
    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The π\pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the π\pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons, which probably indicates that hole transport along DNA is more favorable than electron transport. Our findings are also compared with existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table
    • 

    corecore