10,292 research outputs found

    Hamiltonian thermodynamics of three-dimensional dilatonic black holes

    Full text link
    The action for a class of three-dimensional dilaton-gravity theories with a cosmological constant can be recast in a Brans-Dicke type action, with its free ω\omega parameter. These theories have static spherically symmetric black holes. Those with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity (ω\omega\to\infty), a dimensionally reduced cylindrical four-dimensional general relativity theory (ω=0\omega=0), and a theory representing a class of theories (ω=3\omega=-3). The Hamiltonian formalism is setup in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with one pair of canonical coordinates {M,PM}\{M,P_M\}, MM being the mass parameter and PMP_M its conjugate momenta The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schr\"odinger evolution operator is constructed, the trace is taken, and the partition function of the canonical ensemble is obtained. The black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.Comment: 34 pages, 3 figures, references added, minor changes in the revised versio

    Charged shells in Lovelock gravity: Hamiltonian treatment and physical implications

    Full text link
    Using a Hamiltonian treatment, charged thin shells in spherically symmetric spacetimes in d dimensional Lovelock-Maxwell theory are studied. The coefficients of the theory are chosen to obtain a sensible theory, with a negative cosmological constant appearing naturally. After writing the action and the Lagrangian for a spacetime comprised of an interior and an exterior regions, with a thin shell as a boundary in between, one finds the Hamiltonian using an ADM description. For spherically symmetric spacetimes, one reduces the relevant constraints. The dynamic and constraint equations are obtained. The vacuum solutions yield a division of the theory into two branches, d-2k-1>0 (which includes general relativity, Born-Infeld type theories) and d-2k-1=0 (which includes Chern-Simons type theories), where k gives the highest power of the curvature in the Lagrangian. An additional parameter, chi, gives the character of the vacuum solutions. For chi=1 the solutions have a black hole character. For chi=-1 the solutions have a totally naked singularity character. The integration through the thin shell takes care of the smooth junction. The subsequent analysis is divided into two cases: static charged thin shell configurations, and gravitationally collapsing charged dust shells. Physical implications are drawn: if such a large extra dimension scenario is correct, one can extract enough information from the outcome of those collapses as to know, not only the actual dimension of spacetime, but also which particular Lovelock gravity, is the correct one.Comment: 25 pages, 9 figure

    Pair creation of higher dimensional black holes on a de Sitter background

    Full text link
    We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstrom-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically the pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, that describe respectively a pair accelerated by a string and by an electromagnetic field, are not know yet in a higher dimensional spacetime.Comment: 10 pages; 1 figure included; RexTeX4. v2: References added. Published version. v3: Typo in equation (46) fixe

    Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    Full text link
    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free ω\omega parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found. The theories studied are general relativity, a dimensionally reduced cylindrical four-dimensional general relativity theory, and a theory representing a class of theories, all with a Maxwell term. The Hamiltonian formalism is setup in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right one. The metric functions on the hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates M,PM;Q,PQ{M,P_M; Q,P_Q}, where MM is the mass parameter, which needs renormalization, PMP_M its conjugate momenta, QQ is the charge parameter, and PQP_Q its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schr\"odinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, the chemical potential being the electric potential. The charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.Comment: 38 pages, 3 figure

    Thin-shell wormholes in d-dimensional general relativity: Solutions, properties, and stability

    Full text link
    We construct thin-shell electrically charged wormholes in d-dimensional general relativity with a cosmological constant. The wormholes constructed can have different throat geometries, namely, spherical, planar and hyperbolic. Unlike the spherical geometry, the planar and hyperbolic geometries allow for different topologies and in addition can be interpreted as higher-dimensional domain walls or branes connecting two universes. In the construction we use the cut-and-paste procedure by joining together two identical vacuum spacetime solutions. Properties such as the null energy condition and geodesics are studied. A linear stability analysis around the static solutions is carried out. A general result for stability is obtained from which previous results are recovered.Comment: 16 pages, 1 figur

    A candidate-gene association study for berry colour and anthocyanin content in Vitis vinifera L.

    Get PDF
    Anthocyanin content is a trait of major interest in Vitis vinifera L. These compounds affect grape and wine quality, and have beneficial effects on human health. A candidate-gene approach was used to identify genetic variants associated with anthocyanin content in grape berries. A total of 445 polymorphisms were identified in 5 genes encoding transcription factors and 10 genes involved in either the biosynthetic pathway or transport of anthocyanins. A total of 124 SNPs were selected to examine association with a wide range of phenotypes based on RP-HPLC analysis and visual characterization. The phenotypes were total skin anthocyanin (TSA) concentration but also specific types of anthocyanins and relative abundance. The visual assessment was based on OIV (Organisation Internationale de la Vigne et du Vin) descriptors for berry and skin colour. The genes encoding the transcription factors MYB11, MYBCC and MYC(B) were significantly associated with TSA concentration. UFGT and MRP were associated with several different types of anthocyanins. Skin and pulp colour were associated with nine genes (MYB11, MYBCC, MYC(B), UFGT, MRP, DFR, LDOX, CHI and GST). Pulp colour was associated with a similar group of 11 genes (MYB11, MYBCC, MYC(B), MYC(A), UFGT, MRP, GST, DFR, LDOX, CHI and CHS(A)). Statistical interactions were observed between SNPs within the transcription factors MYB11, MYBCC and MYC(B). SNPs within LDOX interacted with MYB11 and MYC(B), while SNPs within CHI interacted with MYB11 only. Together, these findings suggest the involvement of these genes in anthocyanin content and on the regulation of anthocyanin biosynthesis. This work forms a benchmark for replication and functional studies

    Discrete-time quantum walk dispersion control through long-range correlations

    Full text link
    We investigate the evolution dynamics of inhomogeneous discrete-time one-dimensional quantum walks displaying long-range correlations in both space and time. The associated quantum coin operators are built to exhibit a random inhomogeneity distribution of long-range correlations embedded in the time evolution protocol through a fractional Brownian motion with spectrum following a power-law behavior, S(k)1/kνS(k)\sim 1/k^{\nu}. The power-law correlated disorder encoded in the phases of the quantum coin is shown to give rise to a wide variety of spreading patterns of the qubit states, from localized to subdiffusive, diffusive, and superdiffusive (including ballistic) behavior, depending on the relative strength of the parameters driving the correlation degree. Dispersion control is then possible in one-dimensional discrete-time quantum walks by suitably tunning the long-range correlation properties assigned to the inhomogeneous quantum coin operator

    CVD of CrO2: towards a lower temperature deposition process

    Get PDF
    We report on the synthesis of highly oriented a-axis CrO2 films onto (0001) sapphire by atmospheric pressure CVD from CrO3 precursor, at growth temperatures down to 330 degree Celsius, i.e. close to 70 degrees lower than in published data for the same chemical system. The films keep the high quality magnetic behaviour as those deposited at higher temperature, which can be looked as a promising result in view of their use with thermally sensitive materials, e.g. narrow band gap semiconductors.Comment: 13 pages, 4 figure
    corecore