46 research outputs found

    Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long non-coding RNA MALAT1

    Get PDF
    AbstractMicroRNAs mainly inhibit coding genes and long non-coding RNA expression. Here, we report that hsa-miR-125b and oncogene SIRT7/oncogenic long non-coding RNA MALAT1 were inversely expressed in bladder cancer. Hsa-miR-125b mimic down-regulated, whereas hsa-miR-125b inhibitor up-regulated the expression of SIRT7 and MALAT1. Binding sites were confirmed between hsa-miR-125b and SIRT7/MALAT1. Up-regulation of hsa-miR-125b or down-regulation of SIRT7 inhibited proliferation, motility and increased apoptosis. The effects of up-regulation of hsa-miR-125b were similar to that of silencing MALAT1 in bladder cancer as we had previously described. These data suggest that hsa-miR-125b suppresses bladder cancer development via inhibiting SIRT7 and MALAT1

    Developmental expression and function of DKKL1/Dkkl1 in humans and mice

    Full text link
    Background: Experiments were designed to identify the developmental expression and function of the Dickkopf-Like1 (DKKL1/Dkkl1) gene in humans and mice. Methods: Mouse testes cDNA samples were collected at multiple postnatal times (days 4, 9, 18, 35, and 54, as well as at 6 months) and hybridized to Affymetrix mouse whole genome Genechips. To further characterize the homologous gene DKKL1 in human beings, the expression profiles between human adult testis and foetal testis were compared using Affymetrix human Genechips. The characteristics of DKKL1/Dkkl1 were analysed using various cellular and molecular biotechnologies. Results: The expression of Dkkl1 was not detected in mouse testes on days 4 or 9, but was present on days 18, 35, and 54, as well as at 6 months, which was confirmed by RT-PCR and Western blot results. Examination of the tissue distribution of Dkkl1 demonstrated that while Dkkl1 mRNA was abundantly expressed in testes, little to no expression of Dkkl1 was observed in the epididymis or other tissues. In an in vitro fertilization assay, a Dkkl1 antibody was found to significantly reduce fertilization. Human Genechips results showed that the hybridization signal intensity of DKKL1 was 405.56-fold higher in adult testis than in foetal testis. RT-PCR analysis of multiple human tissues indicated that DKKL1 mRNA was exclusively expressed in the testis. Western blot analysis also demonstrated that DKKL1 was mainly expressed in human testis with a molecular weight of approximately 34 kDa. Additionally, immunohistochemical staining showed that the DKKL1 protein was predominantly located in spermatocytes and round spermatids in human testes. An examination of the expression levels of DKKL1 in infertile male patients revealed that while no DKKL1 appeared in the testes of patients with Sertoli cell only syndrome (SCOS) or cryptorchidism, DKKL1 was observed with variable expression in patients with spermatogenic arrest. Conclusions: These results, together with previous studies, suggest that DKKL1/Dkkl1 may play an important role in testicular development and spermatogenesis and may be an important factor in male infertility.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000308911000001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Endocrinology & MetabolismReproductive BiologySCI(E)3ARTICLEnull1

    A Host Defense Mechanism Involving CFTR-Mediated Bicarbonate Secretion in Bacterial Prostatitis

    Get PDF
    BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(-) and HCO(3)(-), in mediating prostate HCO(3)(-) secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli)-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II), along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3)(-) content (>50 mM), rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3)(-) on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3)(-) secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3)(-) secretion may be up-regulated in prostatitis as a host defense mechanism

    In vitro chemokine (C-C motif) receptor 6-dependent non-inflammatory chemotaxis during spermatogenesis

    No full text
    Abstract Background Chemokine (C-C motif) receptor 6 (CCR6) is present in sperm and plays a significant role in sperm motility and chemotaxis acting in the reproductive tracts. However, the expression and functional significance of CCR6 in testis are still poorly understood, especially in the process of spermatogenesis. Methods and results CCR6 was expressed in spermatogenic cell lines and its expression was shown in an age-dependent upregulation manner from puberty to adulthood in mouse testis. Immunostaining results confirmed the localization of CCR 6 in testis. Further chemotaxis assays demonstrated that spermatogenic cells GC-1 and -2 exhibited a directional movement toward CCR6-specific ligand such as CCL20 or Sertoli cells in vitro. Conclusions The present findings indicate that CCR6 is involved in the chemotaxis of spermatogenic cells in vitro and promotes chemotaxis under non-inflammatory conditions during normal spermatogenesis

    Reduced expression of Enac in Placenta tissues of patients with severe preeclampsia is related to compromised trophoblastic cell migration and invasion during pregnancy.

    Get PDF
    The purpose of the study is to investigate the expression of epithelial sodium channel (ENaC) in normal pregnancy and severe preeclampsia placenta and to explore the underlying mechanism of the relationship between the altered ENaC expression and onset of preeclampsia. Reverse transcription polymerase chain reaction (RT-PCR) and Western blot were used to check epithelial sodium channel subunits expression in mRNA and protein level in first term and full term placental tissue. ENaCα specific RNAi were used to knockdown ENaC expression and cell invasion and migration assay were used to check whether reduced expression of ENaC can compromise trophoblast cell function. The result showed that ENaCα was highly expressed in first term placental trophoblast cells; while EnaCβ was highly expressed in full term placenta. Knockdown ENaCα expression by using small interfering RNA reduced the invasive and migration abilities of HTR-8/SVneo cell. Real time-PCR and Western blot analysis showed that the expression levels of ENaCβ were also significantly lower in severe preeclampsia compared with normal pregnancy. It is concluded that the ENaC played an important role in trophoblast cell invasion and migration. Reduced expression and activity of epithelial sodium channel in trophoblast cells may be involved in the pathogenesis of preeclampsia

    A Novel Mutation of DAX-1 Associated with Secretory Azoospermia.

    No full text
    Secretory azoospermia is a severe form of male infertility caused by unknown factors. DAX-1 is predominantly expressed in mammalian reproductive tissues and plays an important role in spermatogenesis because Dax-1 knockout male mice show spermatogenesis defects. To examine whether DAX-1 is involved in the pathogenesis of secretory azoospermia in humans, we sequenced all of the exons of DAX-1 in 776 patients diagnosed with secretory azoospermia and 709 proven fertile men. A number of coding mutations unique to the patient group, including two synonymous mutations and six missense mutations, were identified. Of the missense mutations, our functional assay demonstrated that the V385L mutation caused the reduced functioning of DAX-1. This novel mutation (p. V385L) of DAX-1 is the first to be identified in association with secretory azoospermia, thereby highlighting the important role of DAX-1 in spermatogenesis

    LPS-induced upregulation of cytokines, CFTR and CAII expression in rat prostate epithelial cells.

    No full text
    <p>Primary rat prostate epithelial cells were treated with 1 µg/ml <i>E.coli</i>-LPS for 24 h. The expression levels of IL-6, IL-1β, TNF-α, CFTR and CAII were evaluated by RT-PCR (A, B) and GAPDH was used as control. Data were from three experiments. (C) <i>E.coli</i>-LPS up-regulated the protein expression of CFTR (160 kD) and CAII (29 kD)as detected by western blot, with β-tubulin (55 kD) used as the loading control. Data were from three experiments. (*P<0.05, **P<0.01, ***P<0.001).</p

    Involvement of CFTR and CAII in bacterial killing <i>in vitro</i>.

    No full text
    <p>(A)When 1×10<sup>4</sup> CFU of <i>E.coli</i> was inoculated to the apical compartment of the rat prostate epithelial cells for 18 h, there was no bacterial activity detected in the culture medium. 10 µM CFTR<sub>inh</sub>-172 (A), 1∶500 CFTR antibody (B) or 50 µM acetazolamide (C) were added with 1×10<sup>5 </sup><i>E.coli</i> to block CFTR or CAII activity and their effect on bacterial activity 18 hours after incubation was shown. (**P<0.01, ***P<0.001).</p
    corecore