55 research outputs found

    MHC class I expression protects rat colon carcinoma cells from hepatic natural killer cell-mediated apoptosis and cytolysis, by blocking the perforin/granzyme pathway

    Get PDF
    BACKGROUND: Hepatic natural killer (NK) cells, the most cytotoxic cells of the natural occurring NK cells, are located in the liver sinusoids and are thus in a strategic position to kill arriving metastasising tumour cells, like colon carcinoma cells. It is known that major histocompatibility complex (MHC) class I on tumour cells negatively regulates NK cell-mediated cytolysis, but this is found using blood- or spleen-derived NK cells. Therefore, using isolated rat hepatic NK cells and the syngeneic colon carcinoma cell line CC531s, we investigated whether this protective role of MHC class I is also operative in hepatic NK cells, and addressed the mechanism of MHC class I protection. RESULTS: When MHC class I on CC531s cells was masked by preincubation with monoclonal antibody OX18, hepatic NK cell-mediated cytolysis ((51)Cr release) as well as apoptosis (DNA fragmentation, nucleus condensation and fragmentation) increased. When hepatic NK cells were preincubated with the granzyme inhibitor 3,4-dichloroisocoumarin, or when extracellular Ca(2+ )was chelated by ethylene glycol-bis(β-aminoethyl ether)-N, N-tetraacetic acid, the enhanced cytolysis and apoptosis were completely inhibited. The involvement of the perforin/granzyme pathway was confirmed by showing that the enhanced cytolysis was caspase-independent. CONCLUSIONS: MHC class I expression protects CC531s colon carcinoma cells from hepatic NK cell-mediated apoptosis and cytolysis, by blocking the perforin/granzyme pathway

    A Quick, Cost-Free Method of Purification of DNA Fragments from Agarose Gel

    Get PDF
    In this short communication we report a quick, cost-free method of purification of DNA fragments from agarose gel. Unlike those procedures that involve commercial kits, this method uses glass wool or absorbent cotton to filter agarose gel during a quick spinning-down of DNA, thus significantly simplifying the routine practice of many molecular biologists and decreasing the cost

    The modified capsular arthroplasty for young patients with developmental dislocation of the hip.

    Get PDF
    The present study aimed to investigate the clinical results of the modified Codivilla-Hey Groves-Colonna capsular arthroplasty in the treatment of young patients with developmental dislocation of the hip. We retrospectively evaluated 90 patients (92 hips) who underwent the modified capsular arthroplasty from June 2012 to June 2021. Hips were evaluated using the modified hip Harris score (mHHS), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score and the 12-item International Hip Outcome Tool (iHOT-12). The Tönnis osteoarthritis grade and the Severin classification system were used to assess the radiographic outcomes. The average age was 15.7 years (range: 8-26 years). The mean pre-operative mHHS, the WOMAC score and the iHOT-12 score were 83.03, 14.05 and 52.79, respectively. The patients were followed for a mean of 41.1 months (range: 12.1-120.9 months). The patients had a mean mHHS of 83.61 (range: 31.2-97), a WOMAC score of 16.41 (range: 0-51) and an iHOT-12 score of 64.81 (range: 12.9-98.2) at the final follow-up. Capsular thickness had a positive predication on the final functional outcomes. The excellent/good rate of radiological reduction was 79.3%. More than 60% of patients had no/slight osteoarthritis. A total of 54 hips (58.7%) had superior radiographic outcomes. The risk factors for inferior radiographic outcomes were capsular quality (odds ratio [OR]: 0.358, 95% confidence interval [CI]: 0.113-0.931) and capsular thickness (OR: 0.265, 95% CI: 0.134-0.525). Joint stiffness was the most common complication (14.1%). We confirmed the efficacy of this procedure in the treatment of developmental hip dislocation. Patients with poor capsular quality are not suitable for this procedure. With suitable selection according to indications, this procedure can restore the hip rotation center with a low incidence of femoral head necrosis or severe osteoarthritis

    CyclinD1 protein plays different roles in modulating chemoresponses in MCF7 and MDA-MB231 cells

    No full text
    Background : CyclinD1 is an essential sensor and activator of cell cycle initiation and progression; overexpression of cyclinD1 is linked to various human cancers, including breast cancer. The elevated cyclinD1 in some types of cancers is believed to be associated with tumor progression and response to systemic treatments. Aims : In this study, we anticipate to address the questions in human breast cancer; the function of cyclinD1 in mediating chemoresponses; and the signaling pathway cooperating with cyclinD1 to interfere with the drug functions. Materials and Methods: Using the cell clones, concurrent ectopic expression of the wild-type or K112E-mutated human cyclinD1 protein in the MCF7 and MDA-MB231 (MB231) breast cancer cells to study the function of cyclinD1 in responses to the chemotherapeutic treatments. Three drugs, cisplatin (CDDP), 5-fluorouracil (5-FU), and Gemzar were used in this study; the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and cell death analysis, clonogenic survival assay, acridine orange (AO)/ethidium bromide (EB) staining, and Western blot assay were conducted to evaluate the drugs′ effects in the cell clones. Results: The cell clones expressing the D1 protein in MCF7 and MB231 cells result in distinct effects on the responses to chemotherapeutic treatments. Particularly with Gemzar, ectopic expression of cyclinD1 protein in MCF7 cells results in a potentiated effect, which is CDK4 kinase activity dependent, whereas in MB231 cells, an opposite effect was observed. Moreover, our results suggested that the distinct chemosensitivities among those cell clones were not resulted from accelerated cell cycle, cell proliferation driven by the cyclinD1CDK4/6-Rb-E2F signaling chain, rather, they were results of the cell cycle-independent functions led by cyclinD1 alone or in complex with CDK4. Conclusions: Our results suggest that the functions of cyclinD1 protein in modulating chemoresponses in the MCF7 and MB231 cells are independent to its function as cell cycle initiator through activation of CDK4/6. Furthermore, the signals modulated by cyclinD1 upon treatment are determined by the drug and the cellular network

    A Quick, Cost-Free Method of Purification of DNA Fragments from Agarose Gel

    No full text
    <p>In this short communication we report a quick, cost-free method of purification of DNA fragments from agarose gel. Unlike those procedures that involve commercial kits, this method uses glass wool or absorbent cotton to filter agarose gel during a quick spinning-down of DNA, thus significantly simplifying the routine practice of many molecular biologists and decreasing the cost.</p

    Comparison of 2.5D and 3D Quantification of Femoral Head Coverage in Normal Control Subjects and Patients with Hip Dysplasia.

    Get PDF
    Hip dysplasia is characterized by insufficient femoral head coverage (FHC). Quantification of FHC is of importance as the underlying goal of the surgery to treat hip dysplasia is to restore a normal acetabular morphology and thereby to improve FHC. Unlike a pure 2D X-ray radiograph-based measurement method or a pure 3D CT-based measurement method, previously we presented a 2.5D method to quantify FHC from a single anteriorposterior (AP) pelvic radiograph. In this study, we first quantified and compared 3D FHC between a normal control group and a patient group using a CT-based measurement method. Taking the CT-based 3D measurements of FHC as the gold standard, we further quantified the bias, precision and correlation between the 2.5D measurements and the 3D measurements on both the control group and the patient group. Based on digitally reconstructed radiographs (DRRs), we investigated the influence of the pelvic tilt on the 2.5D measurements of FHC. The intraclass correlation coefficients (ICCs) for absolute agreement was used to quantify interobserver reliability and intraobserver reproducibility of the 2.5D measurement technique. The Pearson correlation coefficient, r, was used to determine the strength of the linear association between the 2.5D and the 3D measurements. Student's t-test was used to determine whether the differences between different measurements were statistically significant. Our experimental results demonstrated that both the interobserver reliability and the intraobserver reproducibility of the 2.5D measurement technique were very good (ICCs > 0.8). Regression analysis indicated that the correlation was very strong between the 2.5D and the 3D measurements (r = 0.89, p 0.05). The results of this study provided convincing evidence demonstrating the validity of the 2.5D measurements of FHC from a single AP pelvic radiograph and proved that it could serve as a surrogate for 3D CT-based measurements. Thus it may be possible to use this method to avoid a CT scan for the purpose of estimating 3D FHC in diagnosis and post-operative treatment evaluation of patients with hip dysplasia

    Effect of miR-34a on downstream pathway signals in HCC cells.

    No full text
    <p>Western blot and signal intensity of the bands. Antibodies include: phospho-AKT (p-AKT), p-ERK1/2, p-stat5 and β-actin. M: mock control; C1: Negative control for miRNA inhibitor; Inhi: miR-34a inhibitor; C2: Negative control for miRNA mimic; Mimi: miR-34a mimic.</p

    Underexpression of miR-34a in Hepatocellular Carcinoma and Its Contribution towards Enhancement of Proliferating Inhibitory Effects of Agents Targeting c-MET

    Get PDF
    <div><p>Aberrant expression of microRNA-34a (miR-34a) has been reported to be involved in the tumorigenesis and progression of various classes of malignancies. However, its role in hepatocellular carcinoma (HCC) has not been completely clarified. In the current study, we have investigated the clinical significance and the <i>in vitro</i> contribution of miR-34a on biological functions of human HCCs. miR-34a expression in eighty-three cases of HCC formalin-fixed paraffin-embedded (FFPE) tissues decreased significantly compared to that in the adjacent liver tissues (<i>P</i><0.01), as detected by real-time quantitative RT-PCR (RT-qPCR). miR-34a expression in the groups of TNM stage I and II, without metastasis and without portal vein tumor embolus, was significantly higher than that of their corresponding groups (<i>P</i><0.05). In functional experiments, miR-34a mimic suppressed cell growth, migration and invasion, meanwhile it increased cellular apoptosis and caspase activity in HCC cells. miR-34a mimic also reduced phospho-ERK1/2 and phospho-stat5 signaling. In addition, miR-34a mimic enhanced the effect of cell proliferation inhibition and caspase activity induction of agents targeting c-MET (siRNAs and small molecular inhibitor su11274). In conclusion, miR-34a may act as a tumor suppressor miRNA of HCC. The strategies to increase miR-34a level might be a critical targeted therapy for HCC in future.</p> </div
    corecore