9 research outputs found

    Removing Systemic Barriers to Equity, Diversity, and Inclusion: Report of the 2019 Plant Science Research Network Workshop “Inclusivity in the Plant Sciences”

    Get PDF
    A future in which scientific discoveries are valued and trusted by the general public cannot be achieved without greater inclusion and participation of diverse communities. To envision a path towards this future, in January 2019 a diverse group of researchers, educators, students, and administrators gathered to hear and share personal perspectives on equity, diversity, and inclusion (EDI) in the plant sciences. From these broad perspectives, the group developed strategies and identified tactics to facilitate and support EDI within and beyond the plant science community. The workshop leveraged scenario planning and the richness of its participants to develop recommendations aimed at promoting systemic change at the institutional level through the actions of scientific societies, universities, and individuals and through new funding models to support research and training. While these initiatives were formulated specifically for the plant science community, they can also serve as a model to advance EDI in other disciplines. The proposed actions are thematically broad, integrating into discovery, applied and translational science, requiring and embracing multidisciplinarity, and giving voice to previously unheard perspectives. We offer a vision of barrier-free access to participation in science, and a plant science community that reflects the diversity of our rapidly changing nation, and supports and invests in the training and well-being of all its members. The relevance and robustness of our recommendations has been tested by dramatic and global events since the workshop. The time to act upon them is now

    Examining natural variation in drought responses in Brassica napus

    No full text
    Drought is a major stress which reduces crop yields, and which will continue to be an increasing problem in the coming years as climate change and limited fresh water supplies lead to higher temperatures, desertification, and increased soil salinity. These environmental stresses can significantly impact both the seed yield and quality of crops. There are several strategies which plants utilize to mitigate the effects of water deficit, making the identification of specific traits which convey drought tolerance difficult. As drought tolerance is a complex trait, accurate phenotyping to select for resilient genotypes is needed to improve our understanding of plant drought responses. In this study, stable carbon isotope screening (δ13C) of a diversity set of the crop plant Brassica napus grown in the field was used to identify accessions with traits linked with extremes in water use efficiency (WUE). We investigated physiological characteristics of the selected accessions to identify how these characteristics translate to differences in WUE. Using gas exchange techniques, we identified an interesting spring-type accession (G302, Mozart), which exhibited the highest WUE in the field, based on δ13C measurements. This line displayed high CO2 assimilation rates coupled with an increased electron transport capacity (Jmax) under lab conditions. We also analyzed stomatal conductance response to exogenous abscisic acid (ABA) in the selected accessions. While little variation was observed in the response rates of spring-type accessions, one semi-winter accession demonstrated a significantly more rapid response to exogenous ABA, which was in line with a higher WUE derived from δ13C measurements. This research supports the genetic data showing distinct genetic lineages for spring and semi-winter accessions. It also illustrates the importance of examining natural variation at a physiological level for understanding the underlying mechanisms of drought responses

    The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO(2) transport facilitator.

    No full text
    Cellular exchange of carbon dioxide (CO(2) ) is of extraordinary importance for life. Despite this significance, its molecular mechanisms are still unclear and a matter of controversy. In contrast to other living organisms, plants are physiologically limited by the availability of CO(2) . In most plants, net photosynthesis is directly dependent on CO(2) diffusion from the atmosphere to the chloroplast. Thus, it is important to analyze CO(2) transport with regards to its effect on photosynthesis. A mutation of the Arabidopsis thaliana AtPIP1;2 gene, which was characterized as a non-water transporting but CO(2) transport-facilitating aquaporin in heterologous expression systems, correlated with a reduction in photosynthesis under a wide range of atmospheric CO(2) concentrations. Here, we could demonstrate that the effect was caused by reduced CO(2) conductivity in leaf tissue. It is concluded that the AtPIP1;2 gene product limits CO(2) diffusion and photosynthesis in leaves

    Molecular and systems approaches towards drought-tolerant canola crops

    No full text
    Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 New Phytologist Trust.

    Removing systemic barriers to equity, diversity, and inclusion: Report of the 2019 Plant Science Research Network workshop "Inclusivity in the Plant Sciences"

    Get PDF
    A future in which scientific discoveries are valued and trusted by the general public cannot be achieved without greater inclusion and participation of diverse communities. To envision a path towards this future, in January 2019 a diverse group of researchers, educators, students, and administrators gathered to hear and share personal perspectives on equity, diversity, and inclusion (EDI) in the plant sciences. From these broad perspectives, the group developed strategies and identified tactics to facilitate and support EDI within and beyond the plant science community. The workshop leveraged scenario planning and the richness of its participants to develop recommendations aimed at promoting systemic change at the institutional level through the actions of scientific societies, universities, and individuals and through new funding models to support research and training. While these initiatives were formulated specifically for the plant science community, they can also serve as a model to advance EDI in other disciplines. The proposed actions are thematically broad, integrating into discovery, applied and translational science, requiring and embracing multidisciplinarity, and giving voice to previously unheard perspectives. We offer a vision of barrier-free access to participation in science, and a plant science community that reflects the diversity of our rapidly changing nation, and supports and invests in the training and well-being of all its members. The relevance and robustness of our recommendations has been tested by dramatic and global events since the workshop. The time to act upon them is now.This article is published as Henkhaus, Natalie A., Wolfgang Busch, Angela Chen, Adán Colón‐Carmona, Maya Cothran, Nicolas Diaz, Jose Pablo Dundore‐Arias et al. "Removing systemic barriers to equity, diversity, and inclusion: Report of the 2019 Plant Science Research Network workshop “Inclusivity in the Plant Sciences”." Plant Direct 6, no. 8 (2022): e432. doi:10.1002/pld3.432. Posted with permission.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made
    corecore