6 research outputs found

    Impact of early low-calorie low-protein versus standard-calorie standard-protein feeding on outcomes of ventilated adults with shock: design and conduct of a randomised, controlled, multicentre, open-label, parallel-group trial (NUTRIREA-3)

    No full text
    Introduction International guidelines include early nutritional support (≤48 hour after admission), 20–25 kcal/kg/day, and 1.2–2 g/kg/day protein at the acute phase of critical illness. Recent data challenge the appropriateness of providing standard amounts of calories and protein during acute critical illness. Restricting calorie and protein intakes seemed beneficial, suggesting a role for metabolic pathways such as autophagy, a potential key mechanism in safeguarding cellular integrity, notably in the muscle, during critical illness. However, the optimal calorie and protein supply at the acute phase of severe critical illness remains unknown. NUTRIREA-3 will be the first trial to compare standard calorie and protein feeding complying with guidelines to low-calorie low-protein feeding. We hypothesised that nutritional support with calorie and protein restriction during acute critical illness decreased day 90 mortality and/or dependency on intensive care unit (ICU) management in mechanically ventilated patients receiving vasoactive amine therapy for shock, compared with standard calorie and protein targets.Methods and analysis NUTRIREA-3 is a randomised, controlled, multicentre, open-label trial comparing two parallel groups of patients receiving invasive mechanical ventilation and vasoactive amine therapy for shock and given early nutritional support according to one of two strategies: early calorie-protein restriction (6 kcal/kg/day-0.2–0.4 g/kg/day) or standard calorie-protein targets (25 kcal/kg/day, 1.0–1.3 g/kg/day) at the acute phase defined as the first 7 days in the ICU. We will include 3044 patients in 61 French ICUs. Two primary end-points will be evaluated: day 90 mortality and time to ICU discharge readiness. The trial will be considered positive if significant between-group differences are found for one or both alternative primary endpoints. Secondary outcomes include hospital-acquired infections and nutritional, clinical and functional outcomes.Ethics and dissemination The NUTRIREA-3 study has been approved by the appropriate ethics committee. Patients are included after informed consent. Results will be submitted for publication in peer-reviewed journals.Trial registration number NCT03573739

    Impact of early low-calorie low-protein versus standard-calorie standard-protein feeding on outcomes of ventilated adults with shock: design and conduct of a randomised, controlled, multicentre, open-label, parallel-group trial (NUTRIREA-3)

    No full text
    International audienceInternational guidelines include early nutritional support (≤48 hour after admission), 20–25 kcal/kg/day, and 1.2–2 g/kg/day protein at the acute phase of critical illness. Recent data challenge the appropriateness of providing standard amounts of calories and protein during acute critical illness. Restricting calorie and protein intakes seemed beneficial, suggesting a role for metabolic pathways such as autophagy, a potential key mechanism in safeguarding cellular integrity, notably in the muscle, during critical illness. However, the optimal calorie and protein supply at the acute phase of severe critical illness remains unknown. NUTRIREA-3 will be the first trial to compare standard calorie and protein feeding complying with guidelines to low-calorie low-protein feeding. We hypothesised that nutritional support with calorie and protein restriction during acute critical illness decreased day 90 mortality and/or dependency on intensive care unit (ICU) management in mechanically ventilated patients receiving vasoactive amine therapy for shock, compared with standard calorie and protein targets. Methods and analysis NUTRIREA-3 is a randomised, controlled, multicentre, open-label trial comparing two parallel groups of patients receiving invasive mechanical ventilation and vasoactive amine therapy for shock and given early nutritional support according to one of two strategies: early calorie-protein restriction (6 kcal/kg/day-0.2–0.4 g/kg/day) or standard calorie-protein targets (25 kcal/kg/day, 1.0–1.3 g/kg/day) at the acute phase defined as the first 7 days in the ICU. We will include 3044 patients in 61 French ICUs. Two primary end-points will be evaluated: day 90 mortality and time to ICU discharge readiness. The trial will be considered positive if significant between-group differences are found for one or both alternative primary endpoints. Secondary outcomes include hospital-acquired infections and nutritional, clinical and functional outcomes. Ethics and dissemination The NUTRIREA-3 study has been approved by the appropriate ethics committee. Patients are included after informed consent. Results will be submitted for publication in peer-reviewed journals. Trial registration number NCT03573739

    Non-ventilator-associated ICU-acquired pneumonia (NV-ICU-AP) in patients with acute exacerbation of COPD: From the French OUTCOMEREA cohort

    No full text
    Abstract Background Non-ventilator-associated ICU-acquired pneumonia (NV-ICU-AP), a nosocomial pneumonia that is not related to invasive mechanical ventilation (IMV), has been less studied than ventilator-associated pneumonia, and never in the context of patients in an ICU for severe acute exacerbation of chronic obstructive pulmonary disease (AECOPD), a common cause of ICU admission. This study aimed to determine the factors associated with NV-ICU-AP occurrence and assess the association between NV-ICU-AP and the outcomes of these patients. Methods Data were extracted from the French ICU database, OutcomeRea™. Using survival analyses with competing risk management, we sought the factors associated with the occurrence of NV-ICU-AP. Then we assessed the association between NV-ICU-AP and mortality, intubation rates, and length of stay in the ICU. Results Of the 844 COPD exacerbations managed in ICUs without immediate IMV, NV-ICU-AP occurred in 42 patients (5%) with an incidence density of 10.8 per 1,000 patient-days. In multivariate analysis, prescription of antibiotics at ICU admission (sHR, 0.45 [0.23; 0.86], p = 0.02) and no decrease in consciousness (sHR, 0.35 [0.16; 0.76]; p < 0.01) were associated with a lower risk of NV-ICU-AP. After adjusting for confounders, NV-ICU-AP was associated with increased 28-day mortality (HR = 3.03 [1.36; 6.73]; p < 0.01), an increased risk of intubation (csHR, 5.00 [2.54; 9.85]; p < 0.01) and with a 10-day increase in ICU length of stay (p < 0.01). Conclusion We found that NV-ICU-AP incidence reached 10.8/1000 patient-days and was associated with increased risks of intubation, 28-day mortality, and longer stay for patients admitted with AECOPD

    Non-ventilator-associated ICU-acquired pneumonia (NV-ICU-AP) in patients with acute exacerbation of COPD: From the French OUTCOMEREA cohort

    No full text
    Abstract Background Non-ventilator-associated ICU-acquired pneumonia (NV-ICU-AP), a nosocomial pneumonia that is not related to invasive mechanical ventilation (IMV), has been less studied than ventilator-associated pneumonia, and never in the context of patients in an ICU for severe acute exacerbation of chronic obstructive pulmonary disease (AECOPD), a common cause of ICU admission. This study aimed to determine the factors associated with NV-ICU-AP occurrence and assess the association between NV-ICU-AP and the outcomes of these patients. Methods Data were extracted from the French ICU database, OutcomeRea™. Using survival analyses with competing risk management, we sought the factors associated with the occurrence of NV-ICU-AP. Then we assessed the association between NV-ICU-AP and mortality, intubation rates, and length of stay in the ICU. Results Of the 844 COPD exacerbations managed in ICUs without immediate IMV, NV-ICU-AP occurred in 42 patients (5%) with an incidence density of 10.8 per 1,000 patient-days. In multivariate analysis, prescription of antibiotics at ICU admission (sHR, 0.45 [0.23; 0.86], p = 0.02) and no decrease in consciousness (sHR, 0.35 [0.16; 0.76]; p < 0.01) were associated with a lower risk of NV-ICU-AP. After adjusting for confounders, NV-ICU-AP was associated with increased 28-day mortality (HR = 3.03 [1.36; 6.73]; p < 0.01), an increased risk of intubation (csHR, 5.00 [2.54; 9.85]; p < 0.01) and with a 10-day increase in ICU length of stay (p < 0.01). Conclusion We found that NV-ICU-AP incidence reached 10.8/1000 patient-days and was associated with increased risks of intubation, 28-day mortality, and longer stay for patients admitted with AECOPD

    Life Support Limitations in Mechanically Ventilated Stroke Patients

    No full text
    Objectives:. The determinants of decisions to limit life support (withholding or withdrawal) in ventilated stroke patients have been evaluated mainly for patients with intracranial hemorrhages. We aimed to evaluate the frequency of life support limitations in ventilated ischemic and hemorrhagic stroke patients compared with a nonbrain-injured population and to determine factors associated with such decisions. Design:. Multicenter prospective French observational study. Setting:. Fourteen ICUs of the French OutcomeRea network. PATIENTS:. From 2005 to 2016, we included stroke patients and nonbrain-injured patients requiring invasive ventilation within 24 hours of ICU admission. INTERVENTION:. None. MEASUREMENTS AND MAIN RESULTS:. We identified 373 stroke patients (ischemic, n = 167 [45%]; hemorrhagic, n = 206 [55%]) and 5,683 nonbrain-injured patients. Decisions to limit life support were taken in 41% of ischemic stroke cases (vs nonbrain-injured patients, subdistribution hazard ratio, 3.59 [95% CI, 2.78–4.65]) and in 33% of hemorrhagic stroke cases (vs nonbrain-injured patients, subdistribution hazard ratio, 3.9 [95% CI, 2.97–5.11]). Time from ICU admission to the first limitation was longer in ischemic than in hemorrhagic stroke (5 [3–9] vs 2 d [1–6] d; p < 0.01). Limitation of life support preceded ICU death in 70% of ischemic strokes and 45% of hemorrhagic strokes (p < 0.01). Life support limitations in ischemic stroke were increased by a vertebrobasilar location (vs anterior circulation, subdistribution hazard ratio, 1.61 [95% CI, 1.01–2.59]) and a prestroke modified Rankin score greater than 2 (2.38 [1.27–4.55]). In hemorrhagic stroke, an age greater than 70 years (2.29 [1.43–3.69]) and a Glasgow Coma Scale score less than 8 (2.15 [1.08–4.3]) were associated with an increased risk of limitation, whereas a higher nonneurologic admission Sequential Organ Failure Assessment score was associated with a reduced risk (per point, 0.89 [0.82–0.97]). Conclusions:. In ventilated stroke patients, decisions to limit life support are more than three times more frequent than in nonbrain-injured patients, with different timing and associated risk factors between ischemic and hemorrhagic strokes

    Association Between Early Invasive Mechanical Ventilation and Day-60 Mortality in Acute Hypoxemic Respiratory Failure Related to Coronavirus Disease-2019 Pneumonia

    No full text
    Objectives:. About 5% of patients with coronavirus disease-2019 are admitted to the ICU for acute hypoxemic respiratory failure. Opinions differ on whether invasive mechanical ventilation should be used as first-line therapy over noninvasive oxygen support. The aim of the study was to assess the effect of early invasive mechanical ventilation in coronavirus disease-2019 with acute hypoxemic respiratory failure on day-60 mortality. Design:. Multicenter prospective French observational study. Setting:. Eleven ICUs of the French OutcomeRea network. Patients:. Coronavirus disease-2019 patients with acute hypoxemic respiratory failure (Pao2/Fio2 ≤ 300 mm Hg), without shock or neurologic failure on ICU admission, and not referred from another ICU or intermediate care unit were included. Intervention:. We compared day-60 mortality in patients who were on invasive mechanical ventilation within the first 2 calendar days of the ICU stay (early invasive mechanical ventilation group) and those who were not (nonearly invasive mechanical ventilation group). We used a Cox proportional-hazard model weighted by inverse probability of early invasive mechanical ventilation to determine the risk of death at day 60. Measurement and Main Results:. The 245 patients included had a median (interquartile range) age of 61 years (52–69 yr), a Simplified Acute Physiology Score II score of 34 mm Hg (26–44 mm Hg), and a Pao2/Fio2 of 121 mm Hg (90–174 mm Hg). The rates of ICU-acquired pneumonia, bacteremia, and the ICU length of stay were significantly higher in the early (n = 117 [48%]) than in the nonearly invasive mechanical ventilation group (n = 128 [52%]), p < 0.01. Day-60 mortality was 42.7% and 21.9% in the early and nonearly invasive mechanical ventilation groups, respectively. The weighted model showed that early invasive mechanical ventilation increased the risk for day-60 mortality (weighted hazard ratio =1.74; 95% CI, 1.07–2.83, p=0.03). Conclusions:. In ICU patients admitted with coronavirus disease-2019-induced acute hypoxemic respiratory failure, early invasive mechanical ventilation was associated with an increased risk of day-60 mortality. This result needs to be confirmed
    corecore