16 research outputs found

    Blood spots as an alternative to whole blood collection and the effect of a small monetary incentive to increase participation in genetic association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Collection of buccal cells from saliva for DNA extraction offers a less invasive and convenient alternative to venipuncture blood collection that may increase participation in genetic epidemiologic studies. However, dried blood spot collection, which is also a convenient method, offers a means of collecting peripheral blood samples from which analytes in addition to DNA can be obtained.</p> <p>Methods</p> <p>To determine if offering blood spot collection would increase participation in genetic epidemiologic studies, we conducted a study of collecting dried blood spot cards by mail from a sample of female cancer cases (n = 134) and controls (n = 256) who were previously selected for a breast cancer genetics study and declined to provide a venipuncture blood sample. Participants were also randomized to receive either a 2.00billornoincentivewiththebloodspotcollectionkits.</p><p>Results</p><p>Theaveragetimebetweenthevenipuncturesamplerefusalandrecruitmentforthebloodspotcollectionwas4.4years.Thirtysevenpercentofcasesand282.00 bill or no incentive with the blood spot collection kits.</p> <p>Results</p> <p>The average time between the venipuncture sample refusal and recruitment for the blood spot collection was 4.4 years. Thirty-seven percent of cases and 28% of controls provided a dried blood spot card. While the incentive was not associated with participation among controls (29% for 2.00 incentive vs. 26% for no incentive, p = 0.6), it was significantly associated with participation among the breast cancer cases (48% vs. 27%, respectively, p = 0.01). There did not appear to be any bias in response since no differences between cases and controls and incentive groups were observed when examining several demographic, work history and radiation exposure variables.</p> <p>Conclusion</p> <p>This study demonstrates that collection of dried blood spot cards in addition to venipuncture blood samples may be a feasible method to increase participation in genetic case-control studies.</p

    Air quality and error quantity: pollution and performance in a high-skilled, quality-focused occupation

    Get PDF
    We provide the first evidence that short-term exposure to air pollution affects the work performance of a group of highly-skilled, quality-focused employees. We repeatedly observe the decision-making of individual professional baseball umpires, quasi-randomly assigned to varying air quality across time and space. Unique characteristics of this setting combined with high-frequency data disentangle effects of multiple pollutants and identify previously under-explored acute effects. We find a 1 ppm increase in 3-hour CO causes an 11.5% increase in the propensity of umpires to make incorrect calls and a 10 mg/m3 increase in 12-hour PM2.5 causes a 2.6% increase. We control carefully for a variety of potential confounders and results are supported by robustness and falsification checks

    Association of chromosome translocation rate with low dose occupational radiation exposures in U.S. radiologic technologists.

    No full text
    Chromosome translocations are a well-recognized biological marker of radiation exposure and cancer risk. However, there is uncertainty about the lowest dose at which excess translocations can be detected, and whether there is temporal decay of induced translocations in radiation-exposed populations. Dosimetric uncertainties can substantially alter the shape of dose-response relationships; although regression-calibration methods have been used in some datasets, these have not been applied in radio-occupational studies, where there are also complex patterns of shared and unshared errors that these methods do not account for. In this article we evaluated the relationship between estimated occupational ionizing radiation doses and chromosome translocation rates using fluorescent in situ hybridization in 238 U.S. radiologic technologists selected from a large cohort. Estimated cumulative red bone marrow doses (mean 29.3 mGy, range 0-135.7 mGy) were based on available badge-dose measurement data and on questionnaire-reported work history factors. Dosimetric assessment uncertainties were evaluated using regression calibration, Bayesian and Monte Carlo maximum likelihood methods, taking account of shared and unshared error and adjusted for overdispersion. There was a significant dose response for estimated occupational radiation exposure, adjusted for questionnaire-based personal diagnostic radiation, age, sex and study group (5.7 translocations per 100 whole genome cell equivalents per Gy, 95% CI 0.2, 11.3, P = 0.0440). A significant increasing trend with dose continued to be observed for individuals with estimated doses 0.5) of temporal decay of induced translocations. The three methods of analysis to adjust for dose uncertainty gave similar results. In summary, chromosome translocation dose-response slopes were detectable down to <100 mGy and were compatible with those observed in other radiation-exposed populations. However, there are substantial uncertainties in both occupational and other (personal-diagnostic-medical) doses that may be imperfectly taken into account in our analysis

    Association of Chromosome Translocation Rate with Low Dose Occupational Radiation Exposures in U.S. Radiologic Technologists

    No full text
    Chromosome translocations are a well-recognized biological marker of radiation exposure and cancer risk. However, there is uncertainty about the lowest dose at which excess translocations can be detected, and whether there is temporal decay of induced translocations in radiation-exposed populations. Dosimetric uncertainties can substantially alter the shape of dose-response relationships; although regression-calibration methods have been used in some datasets, these have not been applied in radio-occupational studies, where there are also complex patterns of shared and unshared errors that these methods do not account for. In this article we evaluated the relationship between estimated occupational ionizing radiation doses and chromosome translocation rates using fluorescent in situ hybridization in 238 U.S. radiologic technologists selected from a large cohort. Estimated cumulative red bone marrow doses (mean 29.3 mGy, range 0–135.7 mGy) were based on available badge–dose measurement data and on questionnaire-reported work history factors. Dosimetric assessment uncertainties were evaluated using regression calibration, Bayesian and Monte Carlo maximum likelihood methods, taking account of shared and unshared error and adjusted for overdispersion. There was a significant dose response for estimated occupational radiation exposure, adjusted for questionnaire-based personal diagnostic radiation, age, sex and study group (5.7 translocations per 100 whole genome cell equivalents per Gy, 95% CI 0.2, 11.3, P = 0.0440). A significant increasing trend with dose continued to be observed for individuals with estimated doses <100 mGy. For combined estimated occupational and personal-diagnostic-medical radiation exposures, there was a borderline-significant modifying effect of age ( P 0.0704), but little evidence ( P > 0.5) of temporal decay of induced translocations. The three methods of analysis to adjust for dose uncertainty gave similar results. In summary, chromosome translocation dose-response slopes were detectable down to <100 mGy and were compatible with those observed in other radiation-exposed populations. However, there are substantial uncertainties in both occupational and other (personal-diagnostic-medical) doses that may be imperfectly taken into account in our analysis
    corecore