14 research outputs found

    <i>S.</i> Typhimurium-infected mice have tissue inflammation and thrombosis, increased hematopoiesis, and decreased splenic iron.

    No full text
    <p>(A) Mouse liver, 6 weeks post-infection; inflammation and necrosis (arrow). (B) Mouse spleen, 3 weeks post-infection; extramedullary hematopoiesis (EMH; arrow, megakaryocytes), histiocytic infiltration (I) throughout the red pulp, and thrombus (T). H&E stain (A, B). (C) Spleen, mock-infected (left) and infected mouse (right), 3 weeks post-infection; markedly decreased ferric iron staining in red pulp. (D) Spleen, mock-infected (left) and infected mouse (right), 6 weeks post-infection; markedly decreased splenic ferric iron in red pulp. Perl's Prussian Blue stain (C, D). (E) Hemophagocytic macrophage in mouse spleen 3 weeks post-infection that had 10-fold more macrophages and 43-fold more 6N+ macrophages than control mouse spleen. CD11b (red), DAPI (blue), TER119 (green). N  =  endogenous macrophage nucleus, E1  =  nucleated erythrocyte, E2  =  non-nucleated erythrocyte. Confocal fluorescent micrograph. (F) Representative histogram overlay of TER119 expression on DAPI+ splenocytes from a mock-infected (red) and infected mouse (blue) 3 weeks post-infection. Filled gray histogram corresponds to the isotype control. The infected mouse had 11.5-fold more TER119<sup>med</sup> pro-erythroblasts and 5.5-fold more TER119<sup>high</sup> erythroblasts than the mock-infected mouse. (G) Mean numbers of TER119<sup>med</sup> and TER119<sup>high</sup> splenocytes from three mock-infected (white bars) and four infected (gray bars) mice. Mean number of TER119<sup>med</sup> pro-erythroblasts per spleen increased 6.8-fold in infected mice, while the mean number of TER119<sup>high</sup> cells, corresponding to all nucleated erythroblasts subsequent to the pro-erythroblast stage <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0009441#pone.0009441-Socolovsky1" target="_blank">[40]</a>, increased 3.6-fold. (<i>P</i><0.05) Error bars = SD. Original magnifications 100× (A–B), 200× (C–D), and 1000× (E).</p

    Hematology of <i>S.</i> Typhimurium-infected mice: acute, then chronic active inflammatory response; microcytic anemia, persistent microcytosis.

    No full text
    <p>Mice were orally gavaged with 9.1×10<sup>8</sup> CFU of <i>S</i>. Typhimurium (n = 8) or sterile PBS (n = 7). Complete blood counts were monitored over 16 weeks. X  =  <i>S</i>. Typhimurium-infected mice; circle  =  mock-infected control mice. Mean and standard deviation are shown. (A) neutrophils, (B) monocytes, (C) lymphocytes, (D) hematocrit (HCT), (E) mean cell volume (MCV). *<i>P</i><0.05 (Student's <i>t</i>-test).</p

    Clinico-pathologic features of HLH in <i>S.</i> Typhimurium-infected mice.

    No full text
    <p>PI indicates post-oral infection with 2.0×10<sup>9</sup> CFU <i>Salmonella enterica</i> serotype Typhimurium; C indicates mock-infected control mice.</p>*<p><i>P</i><0.05, Student's <i>t</i>-Test.</p>†<p>Independent experiment, same bacterial dosing and range for splenic bacterial CFU results.</p>‡<p>Formal diagnostic criteria for HLH per the Histiocyte Society guidelines <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0009441#pone.0009441-Henter1" target="_blank">[5]</a>.</p>§<p>Consistent with a diagnosis of HLH, and <sup>Π</sup> strong supportive evidence for HLH <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0009441#pone.0009441-Henter1" target="_blank">[5]</a>.</p

    Vacuolation of diverse cell types in homozygous <i>Cln3</i><sup>Δ</sup>

    No full text
    <p><sup><b><i>ex7/8</i></b></sup><b> mice.</b> (A) Representative images are shown of Wright-Giemsa stained peripheral blood smears from <i>Cln3<sup>+/+</sup></i> and <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> littermate mice (scale bar = 10 µm). Note the presence of vacuoles in the cytoplasm of the dark blue stained peripheral blood lymphocyte. (B) Representative images are shown of H&E-stained sections of epididymis from 19-week-old <i>Cln3<sup>+/+</sup></i> and <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> littermate male mice (scale bar = 50 µm). A representative image of a section of mutant (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) epididymis immunostained for vacuolar ATPase (V-ATPase, green) and aquaporin-9 (AQP9, red), which highlight the apical (luminal) membrane of clear/narrow cells or principal cells, respectively (scale bar = 25 µm). (C) Representative TEM images of <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> epididymis cross-sections are shown. Note both the giant vacuoles and the multiple smaller vacuoles filling the cytoplasm of the clear cells. Also note the relative absence of electron-dense material inside the vacuoles. Scale bars, left panel = 10 µm; right panel = 2 µm. (D) Representative images of subunit c immunostained <i>Cln3<sup>+/+</sup></i> and <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> epididymis sections are shown. Asterisks (*) mark some of the large vacuoles. Scale bars = 50 µm. Blood smears and epididymides from at least 10 mice per genotype were analyzed in total, and abnormal vacuolation was observed in all of the <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> mice and in none of the wild-type or <i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup> mice.</p

    Metabolic abnormalities in <i>Cln3</i><sup>Δ</sup>

    No full text
    <p><sup><b><i>ex7/8</i></b></sup><b> mice.</b> (A) Graphs depicting female (left) and male (right) mean body weight data from wild-type (diamonds), heterozygous (squares), and homozygous (triangles) <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice at ages between 11 and 20-weeks are shown (n = 5–10 mice per genotype/sex/age). No significant genotypic differences were observed. Error bars represent SEM. (B) Mean ± SEM rectal body temperatures are shown for male (black bars) and female (gray bars) wild-type (<i>Cln3<sup>+/+</sup></i>), heterozygous (<i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>) and homozygous (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) littermate mice are shown. Rectal body temperatures, which were measured at rest, were slightly elevated in male and female, heterozygous and homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice, compared to wild-type mice. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type). (C) Mean ± SEM values for minimum oxygen consumption (ml/hr) are shown for male (black bars) and female (gray bars) wild-type (<i>Cln3<sup>+/+</sup></i>), heterozygous (<i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>) and homozygous (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) littermate mice are shown. Minimum oxygen consumption was elevated in male and female heterozygous and homozygous <i>Cln3<sup>Δex7/8</sup></i> mice, compared to wild-type mice. 5–10 mice per group (genotype/sex) were analyzed. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type).</p

    Heart analysis of <i>Cln3</i><sup>Δ</sup>

    No full text
    <p><sup><b><i>ex7/8</i></b></sup><b> mice.</b> (A) The bar graph depicts normalized heart weights for wild-type (<i>Cln3<sup>+/+</sup></i>), heterozygous (<i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>), and homozygous (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) littermate 19–20 week old mice. Normalized heart weights represent a ratio of heart weight (mg = milligrams)/body weight (g = grams). Normalized heart weights were slightly increased in heterozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice, and more so in homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice, compared to wild-type littermates. ANOVA analysis suggested a significant genotype effect (p<0.05). (B) Representative micrographs of hematoxylin and eosin (H&E) stained heart sections from wild-type (<i>Cln3<sup>+/+</sup></i>, n = 8) and homozygous (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>, n = 10) littermate 19–20 week old mice are shown, which do not obviously differ from one another in their morphology. Scale bar = 100 µm. (C) Representative micrographs are shown of α-subunit c immunostained heart sections from 19-week old <i>Cln3<sup>+/+</sup></i> and <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> littermate mice. Note the abundance of subunit c-immunopositive deposits in the <i>Cln3<sup>?ex7/8/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup> section. Only sparse punctate subunit c immunostaining is present in the <i>Cln3<sup>+/+</sup></i> section. Scale bar = 200 µm. Inset scale bar = 25 µm.</p

    T cell frequencies in peripheral blood from <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice.

    No full text
    <p>The frequencies of T-cells [% T cells (CD45+)], the ratios of CD4+/CD8+ T cells, and the percentage of Ly6c+ cells among the CD8+ and CD4+ T cell populations, determined by flow cytometry, are shown for female and male wild-type (<i>Cln3<sup>+/+</sup></i>), heterozygous (<i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>), and homozygous (<i>Cln3<sup>Δex7/8/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>) littermate mice. p values, determined in a two-tailed, unpaired Student’s t-test of the heterozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> values versus wild-type (<i>Cln3<sup>+/+</sup></i>) values, or homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> values versus wild-type (<i>Cln3<sup>+/+</sup></i>) values, are shown. Bold typeface highlights parameters that were significantly different versus wild-type controls. Samples from 9–10 mice per group (genotype/sex) were analyzed, as indicated.</p

    Subunit c immunohistochemistry of major hematopoietic tissues from 12-week-old <i>Cln3</i><sup>Δ</sup><sup><i>ex7/8</i></sup> mice.

    No full text
    <p>Representative images from bone marrow brush cytology, tibia cross-sections (‘Bone marrow histology’), and liver and spleen sections immunostained for subunit c are shown for wild-type (<i>Cln3<sup>+/+</sup></i>) and homozygous mutant (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) mice (n = 2−5 mice per tissue/genotype). Inset in <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> bone marrow cytology panel (top right panel) shows a sea-blue histiocyte (arrows) from an H&E stained preparation. Sea-blue histiocytes were not found in wild-type bone marrow cytology preparations. Brown stain reflects subunit c-positive storage material, which is most prominent in cells that appear morphologically consistent with macrophages. Arrowheads mark examples of subunit c filled Kupffer cells in liver, also a macrophage lineage cell. Insets in histology panels show lower power magnification of subunit c immunostain. Scale bars = 25 µm.</p

    Bone marrow analysis of <i>Cln3</i><sup>Δ</sup>

    No full text
    <p><sup><b><i>ex7/8</i></b></sup><b> mice.</b> Representative images are shown of Wright-Giemsa-stained bone marrow brush cytology, H&E stained sections of formalin-fixed, paraffin embedded tibias, and iron stained brush cytology, from wild-type (<i>Cln3<sup>+/+</sup></i>) and homozygous mutant (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) mice (n = 3 mice per genotype). Stained iron appears blue. Note the reduced amount of stained iron in <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> marrow, compared to wild-type marrow. Arrow, erythroid element; arrowhead, myeloid element; asterisk, megakaryocyte. Scale bars, top and bottom panels = 25 µm; middle panels = 100 µm.</p
    corecore