42 research outputs found

    Multimodality Data Integration in Epilepsy

    Get PDF
    An important goal of software development in the medical field is the design of methods which are able to integrate information obtained from various imaging and nonimaging modalities into a cohesive framework in order to understand the results of qualitatively different measurements in a larger context. Moreover, it is essential to assess the various features of the data quantitatively so that relationships in anatomical and functional domains between complementing modalities can be expressed mathematically. This paper presents a clinically feasible software environment for the quantitative assessment of the relationship among biochemical functions as assessed by PET imaging and electrophysiological parameters derived from intracranial EEG. Based on the developed software tools, quantitative results obtained from individual modalities can be merged into a data structure allowing a consistent framework for advanced data mining techniques and 3D visualization. Moreover, an effort was made to derive quantitative variables (such as the spatial proximity index, SPI) characterizing the relationship between complementing modalities on a more generic level as a prerequisite for efficient data mining strategies. We describe the implementation of this software environment in twelve children (mean age 5.2 ± 4.3 years) with medically intractable partial epilepsy who underwent both high-resolution structural MR and functional PET imaging. Our experiments demonstrate that our approach will lead to a better understanding of the mechanisms of epileptogenesis and might ultimately have an impact on treatment. Moreover, our software environment holds promise to be useful in many other neurological disorders, where integration of multimodality data is crucial for a better understanding of the underlying disease mechanisms

    Is epileptogenic cortex truly hypometabolic on interictal positron emission tomography?

    Full text link
    Positron emission tomography (PET) of glucose metabolism is often applied for the localization of epileptogenic brain regions, but hypometabolic areas are often larger than or can miss epileptogenic cortex in nonlesional neocortical epilepsy. The present study is a three-dimensional brain surface analysis designed to demonstrate the functional relation between glucose PET abnormalities and epileptogenic cortical regions. Twelve young patients (mean age, 10.8 years) with intractable epilepsy of neocortical origin underwent chronic intracranial electroencephalographic monitoring. The exact location of the subdural electrodes was determined on high-resolution three-dimensional reconstructed magnetic resonance imaging scan volumes. The electrodes were classified according to their locations over cortical areas, which were defined as hypometabolic, normometabolic, or at the border between hypometabolic and normal cortex (metabolic “border zones”) based on interictal glucose PET. Electrodes with seizure onset were located over metabolic border zones significantly more frequently than over hypometabolic or normometabolic regions. Seizure spread electrodes also more frequently overlay metabolic border zones than hypometabolic regions. These findings suggest that cortical areas with hypometabolism should be interpreted as regions mostly not involved in seizure activity, although epileptic activity commonly occurs in the surrounding cortex. This feature of hypometabolic cortex is remarkably similar to that of structural brain lesions surrounded by epileptogenic cortex. Cortical areas bordering hypometabolic regions can be highly epileptogenic and should be carefully assessed in presurgical evaluations. Ann Neurol 2000;48:88–96Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34882/1/13_ftp.pd

    Objective method for localization of cortical asymmetries using positron emission tomography to aid surgical resection of epileptic foci

    Full text link
    We designed a semiautomated method for the objective detection of abnormal regions of tracer accumulation in the brain. The purpose of the present study was to examine the diagnostic performance of this method by applying it to patients with clinically intractable epilepsy of unilateral origin; they underwent [F-18] deoxyglucose positron emission tomography (PET) prior to surgical resection of epileptic foci. A semiautomated method for assessment of asymmetries in the brain cortex was developed that compares activity concentrations in homotopic cortical areas. When these differences exceeded a predefined threshold, the areas with lower activity were marked and 3-dimensional surface rendered images were created to guide placement of intracranial electrodes (ECoG) followed by surgical resection. The normal amount of asymmetry between small (0.5–0.7 cm 2 ) homotopic cortical regions was determined as 5.9 ± 4.0% (mean ± SD). The false-positive fraction was determined for cutoff thresholds of 1 SD (10%), 1.5 SD (12%), and 2 SD (15%) outside the mean and was found to be 89, 44, and 0%, respectively. The obtained sensitivity-specificity pairs for correct localization of epileptogenic lobes based on the ECoG results were best for the 15% threshold (80/94%, accuracy 0.90). This objective PET method allows the accurate determination of cortical asymmetries, and it proved to be highly efficient in guiding epilepsy surgery. Comp Aid Surg 74–82 (1998). © 1998 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35224/1/4_ftp.pd

    Pathophysiology and functional consequences of human partial epilepsy: lessons from positron emission tomography studies

    No full text
    Positron emission tomography (PET) is a powerful clinical and research tool that, in the past two decades, has provided a great amount of novel data on the pathophysiology and functional consequences of human epilepsy. PET studies revealed cortical and subcortical brain dysfunction of a widespread brain circuitry, providing an unprecedented insight in the complex functional abnormalities of the epileptic brain. Correlation of metabolic and neuroreceptor PET abnormalities with electro-clinical variables helped identify parts of this circuitry, some of which are directly related to primary epileptogenesis, while others, adjacent to or remote from the primary epileptic focus, may be secondary to longstanding epilepsy. PET studies have also provided detailed data on the functional anatomy of cognitive and behavioral abnormalities associated with epilepsy. PET, along with other neuroimaging modalities, can measure longitudinal changes in brain function attributed to chronic seizures as well as therapeutic interventions. This review demonstrates how development of more specific PET tracers and application of multimodality imaging by combining structural and functional neuroimaging with electrophysiological data can further improve our understanding of human partial epilepsy, and helps more effective application of PET in presurgical evaluation of patients with intractable seizures
    corecore