12 research outputs found

    Gene Expression and Clinical Characteristics of Molecular Targeted Therapy 
in Non-small Cell Lung Cancer Patients in Shandong

    No full text
    Background and objective Molecular targeted therapy has gradually become an important treatment for lung cancer, the aim of this research is to analyze the clinicopathologic features associated with the gene mutation status of epidermal growth factor receptor (EGFR), echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK), ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) and Kirsten rat sarcoma viral oncogene (KRAS) in non-small cell lung cancer (NSCLC) patients and determine the most likely populations to benefit from molecular target therapy treatment. Methods The mutation status of EGFR, EML4-ALK fusion gene, ROS1 and KARS gene were determined by Real-time PCR, the relationship between clinical pathologic features and concomitant gene were analyzed with χ2 test by SPSS software 19.0. Results A total of 514 specimens from Shandong tumor hospital were collected from NSCLC patients between January 2014 and May 2016. The total mutation rate of EGFR gene was 36.70%, major occurred in exon 19 (36.61%) and exon 21 (51.36%), respectively, and EGFR mutations usually occurred in female, non-smoking and adenocarcinoma patients (P0.05). ROS1 fusion gene was detected in 136 cases, the positive rate was 3.67%, all patients were 60 years old, and the difference was statistically significant (P<0.05). Only 23 samples were tested KARS gene mutations, two of them were positive and the positive rate was 8.70%. They all occurred in non-smoker and adenocarcinoma patients. No mutation was detected to coexist in EGFR, EML4-ALK and KARS gene mutation. Conclusion EGFR, EML4-ALK, ROS1 and KRAS defines different molecular subset of NSCLC with distinct characteristic, which provides a new option for the clinical treatment of patients with NSCLC

    Melanotic Xp11 translocation renal cancer: a report of a distinctive case and a review of the literature

    No full text
    Abstract Background Melanotic Xp11 translocation renal cancer (TRC) is a newly described exceedingly rare tumor, and its characterization remains controversial. This study aimed to describe a case of distinctive melanotic Xp11 TRC and to elucidate its clinicopathological and molecular genetic features. Case presentation A 44-year-old Chinese female presented with a left renal mass. Abdominal ultrasonography and computed tomography (CT) scans revealed a 4.5 cm × 4.0 cm mass in the left kidney. Grossly, the well-demarcated mass was black with moderately firm consistency. Microscopic examination indicated that the tumor was characterized by the presence of nests and cords of polygonal cells with clear and granular eosinophilic cytoplasm, central round to oval nuclei and occasional nucleoli. Intracytoplasmic melanin was observed in approximately 45% of tumor cells. Uniquely, the tumor presented with intranuclear eosinophilic pseudoinclusions and thick-walled stromal blood vessels. IHC showed that tumor cells were diffusely positive for TFE3 and exhibited patchy and weak HMB45 staining. FISH confirmed the presence of TFE3 rearrangement. Conclusion This case is the twentieth published case of melanotic Xp11 TRC. Moreover, the present patient had a favorable prognosis given that she was disease free at her 113-month postoperative follow-up. Our case adds to the small body of literature on these exceptionally rare tumors and widens their clinicopathological spectrum

    The optimal threshold of 18

    No full text

    The markers to predict the response to neoadjuvant therapy in patients with rectal cancer

    No full text
    Locally advanced rectal cancer is currently treated with preoperative radiochemotherapy, but the response is not uniform. Most patients benefit from preoperative CRT, however, a small proportion of a patient population is less likely to respond to the treatment. The purpose of this study was to measure neoadjuvant therapy combined with Ki-67 and VEGF expression in pretreatment biopsies and postoperative specimens,serum carcinoembryonic antigen (CEA) and CA19-9 level from patients with locally advanced rectal cancer receiving intensive neoadjuvant treatment and to correlate the findings with clinical outcome

    Determining optimal clinical target volume margins in high-grade glioma based on microscopic tumor extension and magnetic resonance imaging

    No full text
    Abstract Introduction In this study, we performed a consecutive macropathologic analysis to assess microscopic extension (ME) in high-grade glioma (HGG) to determine appropriate clinical target volume (CTV) margins for radiotherapy. Materials and methods The study included HGG patients with tumors located in non-functional areas, and supratotal resection was performed. The ME distance from the edge of the tumor to the microscopic tumor cells surrounding brain tissue was measured. Associations between the extent of ME and clinicopathological characteristics were evaluated by multivariate linear regression (MVLR) analysis. An ME predictive model was developed based on the MVLR model. Results Between June 2017 and July 2019, 652 pathologic slides obtained from 30 HGG patients were analyzed. The mean ME distance was 1.70 cm (range, 0.63 to 2.87 cm). The MVLR analysis identified that pathologic grade, subventricular zone (SVZ) contact and O6-methylguanine-DNA methyltransferase (MGMT) methylation, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status were independent variables predicting ME (all P < 0.05). A multivariable prediction model was developed as follows: YME = 0.672 + 0.513XGrade + 0.380XSVZ + 0.439XMGMT + 0.320XIDH + 0.333X1p/19q. The R-square value of goodness of fit was 0.780. The receiver operating characteristic curve proved that the area under the curve was 0.964 (P < 0.001). Conclusion ME was heterogeneously distributed across different grades of gliomas according to the tumor location and molecular marker status, which indicated that CTV delineation should be individualized. The model could predict the ME of HGG, which may help clinicians determine the CTV for individual patients. Trial registration The trial was registered with Chinese Clinical Trial Registry (ChiCTR2100046106). Registered 4 May 2021-Retrospectively registered
    corecore