55 research outputs found

    Detecting Iron Oxidation States in Liquids with the VOXES Bragg Spectrometer

    Full text link
    Determining the oxidation states of metals assumes great importance in various applications because a variation in the oxidation number can drastically influence the material properties. As an example, this becomes evident in edible liquids like wine and oil, where a change in the oxidation states of the contained metals can significantly modify both the overall quality and taste. To this end, here we present the MITIQO project, which aims to identify oxidation states of metals in edible liquids utilizing X-ray emission with Bragg spectroscopy. This is achieved using the VOXES crystal spectrometer, developed at INFN National Laboratories of Frascati (LNF), employing mosaic crystal (HAPG) in the Von Hamos configuration. This combination allow us to work with effective source sizes of up to a few millimeters and improves the typical low efficiency of Bragg spectroscopy, a crucial aspect when studying liquids with low metal concentration. Here we showcase the concept behind MITIQO, for a liquid solution containing oxidized iron. We performed several high-resolution emission spectra measurements, for the liquid and for different powdered samples containing oxidized and pure iron. By looking at the spectral features of the iron's Kβ\beta emission lineshape, we were able to obtain, for a liquid, a result consistent with the oxidized iron powders and successfully quantifying the effect of oxidation

    Strongest atomic physics bounds on Non-Commutative Quantum Gravity Models

    Full text link
    Investigations of possible violations of the Pauli Exclusion Principle represent critical tests of the microscopic space-time structure and properties. Space-time non-commutativity provides a class of universality for several Quantum Gravity models. In this context the VIP-2 Lead experiment sets the strongest bounds, searching for Pauli Exclusion Principle violating atomic-transitions in lead, excluding the θ\theta-Poincar\'e Non Commutative Quantum Gravity models far above the Planck scale for non-vanishing θμν\theta_{\mu \nu} ``electric-like'' components, and up to 6.91026.9 \cdot 10^{-2} Planck scales if θ0i=0\theta_{0i} = 0.Comment: 7 pages, 2 figure

    Experimental test of Non-Commutative Quantum Gravity by VIP-2 Lead

    Full text link
    Pauli Exclusion Principle (PEP) violations induced by space-time non-commutativity, a class of universality for several models of Quantum Gravity, are investigated by the VIP-2 Lead experiment at the Gran Sasso underground National Laboratory of INFN. The VIP-2 Lead experimental bound on the non-commutative space-time scale Λ\Lambda excludes θ\theta-Poincar\'e far above the Planck scale for non vanishing ``electric-like" components of θμν\theta_{\mu \nu}, and up to 6.91026.9 \cdot 10^{-2} Planck scales if they are null. Therefore, this new bound represents the tightest one so far provided by atomic transitions tests. This result strongly motivates high sensitivity underground X-ray measurements as critical tests of Quantum Gravity and of the very microscopic space-time structure.Comment: 13 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:2209.0007

    VIP EXPERIMENT: NEW EXPERIMENTAL LIMIT ON PAULI EXCLUSION PRINCIPLE VIOLATION BY ELECTRONS

    Get PDF
    The VIP (Violation of the Pauli Exclusion Principle) experiment is investigating one of the basic principles of modern physics, searching for anomalous X-rays emitted by copper atoms in a conductor: any detection of these anomalous X-rays would mark a Pauli forbidden transition. VIP is currently taking data at the Gran Sasso underground laboratories, and its scientific goal is to improve by three-four orders of magnitude the previous limit on the probability of Pauli violating transitions, bringing it into the 10-29÷-30 region. The new experimental results, together with future plans, are presented

    High Precision Test of the Pauli Exclusion Principle for Electrons

    Get PDF
    The VIP-2 experiment aims to perform high precision tests of the Pauli Exclusion Principle for electrons. The method consists in circulating a continuous current in a copper strip, searching for the X radiation emission due to a prohibited transition (from the 2p level to the 1s level of copper when this is already occupied by two electrons). VIP already set the best limit on the PEP violation probability for electrons 12β2<4.7×1029\frac{1}{2} \beta^2 < 4.7 \times 10^{-29}, the goal of the upgraded VIP-2 (VIolation of the Pauli Exclusion Principle-2) experiment is to improve this result of two orders of magnitude at least. The experimental apparatus and the results of the analysis of a first set of collected data will be presented

    Search for a remnant violation of the Pauli exclusion principle in a Roman lead target

    Get PDF
    In this paper we report on the results of two analyses of the data taken with a dedicated VIP-Lead experiment at the Gran Sasso National Laboratory of the INFN. We use measurements taken in an environment that is especially well screened from cosmic rays, with a metal target made of “Roman lead” which is characterised by a low level of intrinsic radioactivity. The analyses lead to an improvement, on the upper bounds of the Pauli Exclusion Principle violation for electrons, which is more than one (four) orders of magnitude, when the electron-atom interactions are described in terms of scatterings (or close encounters) respectively

    VIP-2 —High-Sensitivity Tests on the Pauli Exclusion Principle for Electrons

    Get PDF
    The VIP collaboration is performing high sensitivity tests of the Pauli Exclusion Principle for electrons in the extremely low cosmic background environment of the underground Gran Sasso National Laboratory INFN (Italy). In particular, the VIP-2 Open Systems experiment was conceived to put strong constraints on those Pauli Exclusion Principle violation models which respect the so-called Messiah–Greenberg superselection rule. The experimental technique consists of introducing a direct current in a copper conductor, and searching for the X-rays emission coming from a forbidden atomic transition from the L shell to the K shell of copper when the K shell is already occupied by two electrons. The analysis of the first three months of collected data (in 2018) is presented. The obtained result represents the best bound on the Pauli Exclusion Principle violation probability which fulfills the Messiah–Greenberg rule

    HIGH SENSITIVITY QUANTUM MECHANICS TESTS IN THE COSMIC SILENCE

    Get PDF
    The VIP experiment aims to perform high-precision tests of the Pauli Exclusion Principle for electrons in the extremely low cosmic background environment of the Underground Gran Sasso Laboratories of INFN (Italy). The experimental technique consists in introducing a DC current in a copper conductor, searching for K α PEP-forbidden atomic transitions when the K shell is already occupied by two electrons. The results of a preliminary data analysis, corresponding to the first run of the VIP-2 data taking (2016–2017), are presented. The experimental setup in the final configuration is described together with preliminary spectra from the 2019 data-taking campaign
    corecore