13 research outputs found

    Different Transcriptional Control of Metabolism and Extracellular Matrix in Visceral and Subcutaneous Fat of Obese and Rimonabant Treated Mice

    Get PDF
    BACKGROUND: The visceral (VAT) and subcutaneous (SCAT) adipose tissues play different roles in physiology and obesity. The molecular mechanisms underlying their expansion in obesity and following body weight reduction are poorly defined. METHODOLOGY: C57Bl/6 mice fed a high fat diet (HFD) for 6 months developed low, medium, or high body weight as compared to normal chow fed mice. Mice from each groups were then treated with the cannabinoid receptor 1 antagonist rimonabant or vehicle for 24 days to normalize their body weight. Transcriptomic data for visceral and subcutaneous adipose tissues from each group of mice were obtained and analyzed to identify: i) genes regulated by HFD irrespective of body weight, ii) genes whose expression correlated with body weight, iii) the biological processes activated in each tissue using gene set enrichment analysis (GSEA), iv) the transcriptional programs affected by rimonabant. PRINCIPAL FINDINGS: In VAT, "metabolic" genes encoding enzymes for lipid and steroid biosynthesis and glucose catabolism were down-regulated irrespective of body weight whereas "structure" genes controlling cell architecture and tissue remodeling had expression levels correlated with body weight. In SCAT, the identified "metabolic" and "structure" genes were mostly different from those identified in VAT and were regulated irrespective of body weight. GSEA indicated active adipogenesis in both tissues but a more prominent involvement of tissue stroma in VAT than in SCAT. Rimonabant treatment normalized most gene expression but further reduced oxidative phosphorylation gene expression in SCAT but not in VAT. CONCLUSION: VAT and SCAT show strikingly different gene expression programs in response to high fat diet and rimonabant treatment. Our results may lead to identification of therapeutic targets acting on specific fat depots to control obesity

    Body mass index and age at natural menopause: an international pooled analysis of 11 prospective studies

    Get PDF
    Current evidence on the association between body mass index (BMI) and age at menopause remains unclear. We investigated the relationship between BMI and age at menopause using data from 11 prospective studies. A total of 24,196 women who experienced menopause after recruitment was included. Baseline BMI was categorised according to the WHO criteria. Age at menopause, confirmed by natural cessation of menses for ≥ 12 months, was categorised as < 45 years (early menopause), 45–49, 50–51 (reference category), 52–53, 54–55, and ≥ 56 years (late age at menopause). We used multinomial logistic regression models to estimate multivariable relative risk ratios (RRRs) and 95% confidence intervals (CI) for the associations between BMI and age at menopause. The mean (standard deviation) age at menopause was 51.4 (3.3) years, with 2.5% of the women having early and 8.1% late menopause. Compared with those with normal BMI (18.5–24.9 kg/m2), underweight women were at a higher risk of early menopause (RRR 2.15, 95% CI 1.50–3.06), while overweight (1.52, 1.31–1.77) and obese women (1.54, 1.18–2.01) were at increased risk of late menopause. Overweight and obesity were also significantly associated with around 20% increased risk of menopause at ages 52–53 and 54–55 years. We observed no association between underweight and late menopause. The risk of early menopause was higher among obese women albeit not significant (1.23, 0.89–1.71). Underweight women had over twice the risk of experiencing early menopause, while overweight and obese women had over 50% higher risk of experiencing late menopause

    Valuing Environmental Factors in Cost-Benefit Analysis Using Data Envelopment Analysis

    Full text link
    corecore