7 research outputs found

    Traffic Aware Scheduler for Time-Slotted Channel-Hopping-Based IPv6 Wireless Sensor Networks

    No full text
    Wireless sensor networks (WSNs) are becoming increasingly prevalent in numerous fields. Industrial applications and natural-disaster-detection systems need fast and reliable data transmission, and in several cases, they need to be able to cope with changing traffic conditions. Thus, time-slotted channel hopping (TSCH) offers high reliability and efficient power management at the medium access control (MAC) level; TSCH considers two dimensions, time and frequency when allocating communication resources. However, the scheduler, which decides where in time and frequency these communication resources are allotted, is not part of the standard. Orchestra has been proposed as a scheduler which allocates the communication resources based on information collected through the IPv6 routing protocol for low-power and lossy networks (RPL). Orchestra is a very elegant solution, but does not adapt to high traffic. This research aims to build an Orchestra-based scheduler for applications with unpredictable traffic bursts. The implemented scheduler allocates resources based on traffic congestion measured for the children of the root and RPL subtree size of the same nodes. The performance analysis of the proposed scheduler shows lower latency and higher packet delivery ratio (PDR) compared to Orchestra during bursts, with negligible impact outside them

    Influence of SiO2 Embedding on the Structure, Morphology, Thermal, and Magnetic Properties of Co0.4Zn0.4Ni0.2Fe2O4 Particles

    No full text
    (Co0.4Zn0.4Ni0.2Fe2O4)α(SiO2)(100−α) samples obtained by embedding Co0.4Zn0.4Ni0.2Fe2O4 nanoparticles in SiO2 in various proportions were synthesized by sol-gel process and characterized using thermal analysis, Fourier-transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, inductively coupled plasma optical emission spectrometry, and magnetic measurements. Poorly crystalline Co–Zn–Ni ferrite at low annealing temperatures (500 °C) and highly crystalline Co–Zn–Ni ferrite together with traces of crystalline Fe2SiO4 (800 °C) and SiO2 (tridymite and cristobalite) (1200 °C) were obtained. At 1200 °C, large spherical particles with size increasing with the ferrite content (36–120 nm) were obtained. Specific surface area increased with the SiO2 content and decreased with the annealing temperature above 500 °C. Magnetic properties were enhanced with the increase in ferrite content and annealing temperature

    Time Slotted Channel Hopping and ContikiMAC for IPv6 Multicast-Enabled Wireless Sensor Networks

    No full text
    Smart buildings benefit from IEEE 802.15.4e time slotted channel hopping (TSCH) medium access for creating reliable and power aware wireless sensor and actuator networks (WSANs). As in these networks, sensors are supposed to communicate to each other and with actuators, IPv6 multicast forwarding is seen as a valuable means to reduce traffic. A promising approach to multicast, based on the Routing Protocol for Low Power and Lossy Networks (RPL) is Bidirectional Multicast RPL Forwarding (BMRF). This paper aimed to analyze the performance of BMRF over TSCH. The authors investigated how an adequate TSCH scheduler can help to achieve a requested quality of service (QoS). A theoretical model for the delay and energy consumption of BMRF over TSCH is presented. Next, BMRF’s link layer (LL) unicast and LL broadcast forwarding modes were analyzed on restricted and realistic topologies. On topologies with increased interference, BMRF’s LL broadcast on top of TSCH causes high energy consumption, mainly because of the amount of energy needed to run the schedule, but it significantly improves packet delivery ratio and delay compared to ContikiMAC under the same conditions. In most cases, the LL unicast was found to outperform the LL broadcast, but the latter can be beneficial to certain applications, especially those sensitive to delays

    Influence of SiO<sub>2</sub> Embedding on the Structure, Morphology, Thermal, and Magnetic Properties of Co<sub>0.4</sub>Zn<sub>0.4</sub>Ni<sub>0.2</sub>Fe<sub>2</sub>O<sub>4</sub> Particles

    No full text
    (Co0.4Zn0.4Ni0.2Fe2O4)α(SiO2)(100−α) samples obtained by embedding Co0.4Zn0.4Ni0.2Fe2O4 nanoparticles in SiO2 in various proportions were synthesized by sol-gel process and characterized using thermal analysis, Fourier-transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, inductively coupled plasma optical emission spectrometry, and magnetic measurements. Poorly crystalline Co–Zn–Ni ferrite at low annealing temperatures (500 °C) and highly crystalline Co–Zn–Ni ferrite together with traces of crystalline Fe2SiO4 (800 °C) and SiO2 (tridymite and cristobalite) (1200 °C) were obtained. At 1200 °C, large spherical particles with size increasing with the ferrite content (36–120 nm) were obtained. Specific surface area increased with the SiO2 content and decreased with the annealing temperature above 500 °C. Magnetic properties were enhanced with the increase in ferrite content and annealing temperature

    Time Slotted Channel Hopping and ContikiMAC for IPv6 Multicast-Enabled Wireless Sensor Networks

    No full text
    Smart buildings benefit from IEEE 802.15.4e time slotted channel hopping (TSCH) medium access for creating reliable and power aware wireless sensor and actuator networks (WSANs). As in these networks, sensors are supposed to communicate to each other and with actuators, IPv6 multicast forwarding is seen as a valuable means to reduce traffic. A promising approach to multicast, based on the Routing Protocol for Low Power and Lossy Networks (RPL) is Bidirectional Multicast RPL Forwarding (BMRF). This paper aimed to analyze the performance of BMRF over TSCH. The authors investigated how an adequate TSCH scheduler can help to achieve a requested quality of service (QoS). A theoretical model for the delay and energy consumption of BMRF over TSCH is presented. Next, BMRF’s link layer (LL) unicast and LL broadcast forwarding modes were analyzed on restricted and realistic topologies. On topologies with increased interference, BMRF’s LL broadcast on top of TSCH causes high energy consumption, mainly because of the amount of energy needed to run the schedule, but it significantly improves packet delivery ratio and delay compared to ContikiMAC under the same conditions. In most cases, the LL unicast was found to outperform the LL broadcast, but the latter can be beneficial to certain applications, especially those sensitive to delays

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore