20,192 research outputs found

    Anomalous Viscosity of the Quark-Gluon Plasma

    Full text link
    The shear viscosity of the quark-gluon plasma is predicted to be lower than the collisional viscosity for weak coupling. The estimated ratio of the shear viscosity to entropy density is rather close to the ratio calculated by N = 4 super Yang-Mills theory for strong coupling, which indicates that the quark-gluon plasma might be strongly coupled. However, in presence of momentum anisotropy, the Weibel instability can arise and drive the turbulent transport. Shear viscosity can be lowered by enhanced collisionality due to turbulence, but the decorrelation time and its relation to underlying dynamics and color-magnetic fields have not been calculated self-consistently. In this paper, we use resonance broadening theory for strong turbulence to calculate the anomalous viscosity of the quark-gluon plasma for nonequilibrium. For saturated Weibel instability, we estimate the scalings of the decorrelation rate and viscosity and compare these with collisional transport. This calculation yields an explicit connection between the underlying momentum space anisotropy and the viscosity anomaly.Comment: 16 pages, 2 figure

    Theory of Two Dimensional Mean Field Electron Magnetohydrodynamics

    Get PDF
    The theory of mean field electrodynamics for diffusive processes in Electron Magnetohydrodynamic (EMHD) model is presented. In contrast to Magnetohydrodynamics (MHD) the evolution of magnetic field here is governed by a nonlinear equation in the magnetic field variables. A detailed description of diffusive processes in two dimensions are presented in this paper. In particular, it has been shown analytically that the turbulent magnetic field diffusivity is suppressed from naive quasilinear estimates. It is shown that for complete whisterlization of the spectrum, the turbulent diffusivity vanishes. The question of whistlerization of the turbulent spectrum is investigated numerically, and a reasonable tendency towards whisterlization is observed. Numerical studies also show the suppression of magnetic field diffusivity in accordance with the analytical estimates.Comment: 18 pages, 6 figure

    Suppression of Cross-Field Transport of a Passive Scalar in Two-Dimensional Magnetohydrodynamic Turbulence

    Full text link
    The theory of passive scalar transport in two dimensional turbulent fluids is generalized to the case of 2D MHD. Invariance of the cross correlation of scalar concentration and magnetic potential produces a novel contribution to the concentration flux. This pinch effect is proportional to the mean potential gradient, and is shown to drastically reduce transport of the passive scalar across the mean magnetic field when . Transport parallel to the mean magnetic field is unchanged. Implications for models of transport in turbulent magnetofluids are discussed. PAC NOS. 47.25.Jn, 47.65.+aComment: uuencoded compressed postscript fil

    Spontaneous Transport Barriers Quench Turbulent Resistivity in 2D MHD

    Get PDF
    This Letter identifies the physical mechanism for the quench of turbulent resistivity in 2D MHD. Without an imposed, ordered magnetic field, a multi-scale, blob-and-barrier structure of magnetic potential forms spontaneously. Magnetic energy is concentrated in thin, linear barriers, located at the interstices between blobs. The barriers quench the transport and kinematic decay of magnetic energy. The local transport bifurcation underlying barrier formation is linked to the inverse cascade of A2\langle A^2\rangle and negative resistivity, which induce local bistability. For small scale forcing, spontaneous layering of the magnetic potential occurs, with barriers located at the interstices between layers. This structure is effectively a magnetic staircase

    Impact of Resonant Magnetic Perturbations on Zonal Modes, Drift-Wave Turbulence and the L-H Transition Threshold

    Full text link
    We study the effects of Resonant Magnetic Perturbations (RMPs) on turbulence, flows and confinement in the framework of resistive drift-wave turbulence. This work was motivated, in parts, by experiments reported at the IAEA 2010 conference [Y. Xu {\it et al}, Nucl. Fusion \textbf{51}, 062030] which showed a decrease of long-range correlations during the application of RMPs. We derive and apply a zero-dimensional predator-prey model coupling the Drift-Wave Zonal Mode system [M. Leconte and P.H. Diamond, Phys. Plasmas \textbf{19}, 055903] to the evolution of mean quantities. This model has both density gradient drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. This model allows a description of the full L-H transition evolution with RMPs, including the mean sheared flow evolution. The key results are: i) The L-I and I-H power thresholds \emph{both} increase with RMP amplitude |\bx|, the relative increase of the L-I threshold scales as \Delta P_{\rm LI} \propto |\bx|^2 \nu_*^{-2} \gyro^{-2}, where ν\nu_* is edge collisionality and \gyro is the sound gyroradius. ii) RMPs are predicted to \emph{decrease} the hysteresis between the forward and back-transition. iii) Taking into account the mean density evolution, the density profile - sustained by the particle source - has an increased turbulent diffusion compared with the reference case without RMPs which provides one possible explanation for the \emph{density pump-out} effect.Comment: 30 pages, IAEA-based articl

    Nonlinear parallel momentum transport in strong turbulence

    Full text link
    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the \emph{nonlinear} momentum flux-. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas {\bf 18}, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong turbulence is calculated by using three dimensional Hasegawa-Mima equation. It is shown that nonlinear diffusivity is smaller than quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so could be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress

    Intrinsic rotation drive by collisionless trapped electron mode turbulence

    Full text link
    Both the parallel residual stress and parallel turbulent acceleration driven by electrostatic collisionsless trapped electron mode (CTEM) turbulence are calculated analytically using gyrokinetic theory. Quasilinear results show that the parallel residual stress contributes an outward flux of co-current rotation for normal magnetic shear and turbulence intensity profile increasing outward. This may induce intrinsic counter-current rotation or flattening of the co-current rotation profile. The parallel turbulent acceleration driven by CTEM turbulence vanishes, due to the absence of a phase shift between density fluctuation and ion pressure fluctuation. This is different from the case of ion temperature gradient (ITG) turbulence, for which the turbulent acceleration can provide co-current drive for normal magnetic shear and turbulence intensity profile increasing outward. Its order of magnitude is predicted to be the same as that of the divergence of the residual stress [Lu Wang and P.H. Diamond, Phys. Rev. Lett. {\bf 110}, 265006 (2013)]. A possible connection of these theoretical results to experimental observations of electron cyclotron heating effects on toroidal rotation is discussed.Comment: Accepted by Phys. Plasma
    corecore