12,440 research outputs found

    Polarization morphology of SiO masers in the circumstellar envelope of the AGB star R Cassiopeiae

    Full text link
    Silicon monoxide maser emission has been detected in the circumstellar envelopes of many evolved stars in various vibrationally-excited rotational transitions. It is considered a good tracer of the wind dynamics close to the photosphere of the star. We have investigated the polarization morphology in the circumstellar envelope of an AGB star, R Cas. We mapped the linear and circular polarization of SiO masers in the v=1, J=1-0 transition. The linear polarization is typically a few tens of percent while the circular polarization is a few percent. The fractional polarization tends to be higher for emission of lower total intensity. We found that, in some isolated features the fractional linear polarization appears to exceed 100%. We found the Faraday rotation is not negligible but is ~15 deg., which could produce small scale structure in polarized emission whilst total intensity is smoother and partly resolved out. The polarization angles vary considerably from feature to feature but there is a tendency to favour the directions parallel or perpendicular to the radial direction with respect to the star. In some features, the polarization angle abruptly flips 90 deg. We found that our data are in the regime where the model of Goldreich et al (1973) can be applied and the polarization angle flip is caused when the magnetic field is at close to 55 deg. to the line of sight. The polarization angle configuration is consistent with a radial magnetic field although other configurations are not excluded.Comment: 14 pages, 15 figures. Accepted for publication in MNRA

    The 43GHz SiO maser in the circumstellar envelope of the AGB star R Cassiopeiae

    Full text link
    We present multi-epoch, total intensity, high-resolution images of 43GHz, v=1, J=1-0 SiO maser emission toward the Mira variable R Cas. In total we have 23 epochs of data for R Cas at approximate monthly intervals over an optical pulsation phase range from 0.158 to 1.78. These maps show a ring-like distribution of the maser features in a shell, which is assumed to be centred on the star at a radius of 1.6 to 2.3 times the stellar radii. It is clear from these images that the maser emission is significantly extended around the star. At some epochs a faint outer arc can be seen at 2.2 stellar radii. The intensity of the emission waxes and wanes during the stellar phase. Some maser features are seen infalling as well as outflowing. We have made initial comparisons of our data with models by Gray et. al. (2009).Comment: 12 pages, 14 figure

    Collateral and Debt Maturity Choice. A Signaling Model

    Get PDF
    This paper derives optimal loan policies under asymmetric information where banks offer loan contracts of long and short duration, backed or unbacked with collateral. The main novelty of the paper is that it analyzes a setting in which high quality firms use collateral as a complementary device along with debt maturity to signal their superiority. The least-cost signaling equilibrium depends on the relative costs of the signaling devices, the difference in firm quality and the proportion of good firms in the market. Model simulations suggest a non-monotonic relationship between firm quality and debt maturity, in which high quality firms have both long-term secured debt and short-term secured or non-secured debt.

    Transport control by coherent zonal flows in the core/edge transitional regime

    Get PDF
    3D Braginskii turbulence simulations show that the energy flux in the core/edge transition region of a tokamak is strongly modulated - locally and on average - by radially propagating, nearly coherent sinusoidal or solitary zonal flows. The flows are geodesic acoustic modes (GAM), which are primarily driven by the Stringer-Winsor term. The flow amplitude together with the average anomalous transport sensitively depend on the GAM frequency and on the magnetic curvature acting on the flows, which could be influenced in a real tokamak, e.g., by shaping the plasma cross section. The local modulation of the turbulence by the flows and the excitation of the flows are due to wave-kinetic effects, which have been studied for the first time in a turbulence simulation.Comment: 5 pages, 5 figures, submitted to PR

    SDSS IV MaNGA - Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies

    Get PDF
    We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed HαH\alpha emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into the account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.Comment: 13 pages, 11 figures, accepted for publication in Ap
    • …
    corecore