17 research outputs found

    Updates on malaria epidemiology and profile in Cabo Verde from 2010 to 2019: the goal of elimination.

    Get PDF
    BACKGROUND: Located in West Africa, Cabo Verde is an archipelago consisting of nine inhabited islands. Malaria has been endemic since the settlement of the islands during the sixteenth century and is poised to achieve malaria elimination in January 2021. The aim of this research is to characterize the trends in malaria cases from 2010 to 2019 in Cabo Verde as the country transitions from endemic transmission to elimination and prevention of reintroduction phases. METHODS: All confirmed malaria cases reported to the Ministry of Health between 2010 and 2019 were extracted from the passive malaria surveillance system. Individual-level data available included age, gender, municipality of residence, and the self-reported countries visited if travelled within the past 30 days, therby classified as imported. Trends in reported cases were visualized and multivariable logistic regression used to assess risk factors associated with a malaria case being imported and differences over time. RESULTS: A total of 814 incident malaria cases were reported in the country between 2010 and 2019, the majority of which were Plasmodium falciparum. Overall, prior to 2017, when the epidemic occurred, 58.1% (95% CI 53.6-64.6) of infections were classified as imported, whereas during the post-epidemic period, 93.3% (95% CI 86.9-99.7) were imported. The last locally acquired case was reported in January 2018. Imported malaria cases were more likely to be 25-40 years old (AOR: 15.1, 95% CI 5.9-39.2) compared to those under 15 years of age and more likely during the post-epidemic period (AOR: 56.1; 95% CI 13.9-225.5) and most likely to be reported on Sao Vicente Island (AOR = 4256.9, 95% CI = 260-6.9e+4) compared to Boavista. CONCLUSIONS: Cabo Verde has made substantial gains in reducing malaria burden in the country over the past decade and are poised to achieve elimination in 2021. However, the high mobility between the islands and continental Africa, where malaria is still highly endemic, means there is a constant risk of malaria reintroduction. Characterization of imported cases provides useful insight for programme and enables better evidence-based decision-making to ensure malaria elimination can be sustained

    Evolution of the Ace-1 and Gste2 Mutations and Their Potential Impact on the Use of Carbamate and Organophosphates in IRS for Controlling Anopheles gambiae s.l., the Major Malaria Mosquito in Senegal

    Get PDF
    Widespread of insecticide resistance amongst the species of the Anopheles gambiae complex continues to threaten vector control in Senegal. In this study, we investigated the presence and evolution of the Ace-1 and Gste2 resistance genes in natural populations of Anopheles gambiae s.l., the main malaria vector in Senegal. Using historical samples collected from ten sentinel health districts, this study focused on three different years (2013, 2017, and 2018) marking the periods of shift between the main public health insecticides families (pyrethroids, carbamates, organophosphates) used in IRS to track back the evolutionary history of the resistance mutations on the Ace-1 and Gste2 loci. The results revealed the presence of four members of the Anopheles gambiae complex, with the predominance of An. arabiensis followed by An. gambiae, An. coluzzii, and An. gambiae-coluzzii hybrids. The Ace-1 mutation was only detected in An. gambiae and An. gambiae-coluzzii hybrids at low frequencies varying between 0.006 and 0.02, while the Gste2 mutation was found in all the species with a frequency ranging between 0.02 and 0.25. The Ace-1 and Gste2 genes were highly diversified with twenty-two and thirty-one different haplotypes, respectively. The neutrality tests on each gene indicated a negative Tajima's D, suggesting the abundance of rare alleles. The presence and spread of the Ace-1 and Gste2 resistance mutations represent a serious threat to of the effectiveness and the sustainability of IRS-based interventions using carbamates or organophosphates to manage the widespread pyrethroids resistance in Senegal. These data are of the highest importance to support the NMCP for evidence-based vector control interventions selection and targeting

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Evaluation of the Efficacy of Fludora<sup>®</sup> Fusion WP-SB 56.25 (Mixture of Clothianidin and Deltamethrin) against <i>Anopheles coluzzii</i> Laboratory and <i>An. arabiensis</i> Wild Colonies

    No full text
    For malaria control, the application of long-lasting insecticidal nets and indoor residual spraying has led to a significant reduction in morbidity and mortality. However, the sustainability of these gains is hampered by the increase in insecticide resistance. It is therefore judicious to evaluate new insecticide formulations. In comparison to clothianidin and deltamethrin, the efficacy and residual effect of Fludora® Fusion was evaluated using an Anopheles coluzzii laboratory and An. arabiensis wild colonies in huts from August 2016 to June 2017 on cement and mud walls. Mortality was recorded at 24, 48, 72, and 96 h post exposure. Like deltamethrin and clothianidin, Fludora® Fusion showed delayed mortality rates above the WHO’s 80% threshold over a period of 11 months with the laboratory strain. With the wild strain, while residual efficacy was observed at 2 months for the three insecticides, no residual efficacy was observed at 8 months at 24 h in both substrates. However, the increased efficacy was observed with increased holding periods (72 h and 96 h). These findings suggest that Fludora® Fusion could be an alternative candidate since this duration covers the transmission period in most areas in Senegal

    Characterization of the swarming behavior of Anopheles coluzzii and Anopheles gambiae (Diptera: Culicidae) populations in a hybrid zone of Senegal.

    No full text
    Anopheles gambiae and Anopheles coluzzii, often found in sympatry and synchronous, have undergone a premating reproductive isolation across their distribution range. However, in the Western coast of Africa, unexpected hybridization zones have been observed, and little is known about swarming behavior of these cryptic taxa. Here, we characterized the swarming behavior of An. coluzzii and An. gambiae to investigate its role in the high hybridization level in Senegal. The study was conducted in the south and central Senegal during the 2018 rainy season. Mating swarms of malaria vectors were surveyed at sunset and collected using an insect net. Meanwhile, indoor resting populations of malaria vectors were collected by pyrethrum spray catches. Upon collection, specimens were identified morphologically, and then members of the An. gambiae complex were identified at the species level by polymerase chain reaction (PCR). An. gambiae swarmed mainly over bare ground, whereas An. coluzzii were found swarming above various objects creating a dark-light contrast with the bare ground. The swarms height varied from 0.5 to 2.5 m. Swarming starting time was correlated with sunset whatever the months for both species, and generally lasted about 10 min. No mixed swarm of An. gambiae and An. coluzzii was found even in the high hybridization area. These results indicated a premating isolation between An. coluzzii and An. gambiae. However, the high hybridization rate in the sympatric area suggests that heterogamous mating is occurring, thus stressing the need for further extensive studies. [Abstract copyright: © The Author(s) 2023. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: [email protected].

    Insecticide resistance in Anopheles arabiensis populations from Dakar and its suburbs: role of target site and metabolic resistance mechanisms

    No full text
    Abstract Background Urban malaria is an increasing concern in most of the sub-Saharan Africa countries. In Dakar, the capital city of Senegal, the malaria epidemiology has been complicated by recurrent flooding since 2005. The main vector control measure for malaria prevention in Dakar is the community use of long-lasting insecticide-treated nets. However, the increase of insecticide resistance reported in this area needs to be better understood for suitable resistance management. This study reports the situation of insecticide resistance and underlying mechanisms in Anopheles arabiensis populations from Dakar and its suburbs. Results All the populations tested showed resistance to almost all insecticides except organophosphates families, which remain the only lethal molecules. Piperonil butoxide (PBO) and ethacrinic acid (EA) the two synergists used, have respectively and significantly restored the susceptibility to DDT and permethrin of Anopheles population. Molecular identification of specimens revealed the presence of An. arabiensis only. Kdr genotyping showed the presence of the L1014F mutation (kdr-West) as well as L1014S (kdr-East). This L1014S mutation was found at very high frequencies (89.53%) in almost all districts surveyed, and in association with the L1014F (10.24%). Conclusion Results showed the contribution of both target-site and metabolic mechanisms in conferring pyrethroid resistance to An. arabiensis from the flooded areas of Dakar suburbs. These data, although preliminary, stress the need for close monitoring of the urban An. arabiensis populations for a suitable insecticide resistance management system to preserve core insecticide-based vector control tools in this flooded area

    Achievement of malaria pre-elimination in Cape Verde according to the data collected from 2010 to 2016

    No full text
    Abstract Background Malaria, despite being preventable and treatable, continues to be a major public health problem worldwide. The archipelago nation of Cape Verde is in a malaria pre-elimination phase with the highest potential to achieve the target goal of elimination in 2020. Methods Nationwide malaria epidemiological data were obtained from the Cape Verde health information system that includes the individual malaria case notification system from all of the country’s health structures. Each case is reported to the surveillance service then to the National Malaria Control Programme, which allowed for compilation in the national malaria case database. The database was analysed to assess the origin of the malaria cases, and incidence was calculated from 2010 to 2016 by sex and age. The health centre, health district and month of diagnosis were evaluated, as well as the sex and the age of the patients, allowing a direct descriptive analysis of national data to provide an up-to-date malaria epidemiological profile of the country. Malaria cases were classified as imported or indigenous, and then, geographical analyses were performed using a unique Geographical National Code with Quantum Geographic Information System 2.16.2 software to map the cases by municipalities. The overall temporal evolution of cases was analysed to assess their monthly and yearly variations from 2010 to 2016. Results Malaria is unstable in Cape Verde, with inter-annual variation and the majority of infections occurring in adult males (> 20 years). The indigenous cases are restricted to Santiago (96%) and Boavista (4%), while imported cases were recorded in all the nine inhabited islands, originating from neighbouring countries with ongoing malaria transmission; from Lusophone countries (25% from Angola, 25% from Guinea-Bissau), followed by the Republic of Senegal (12%) and Equatorial Guinea (10%). In 2010–2012, more imported (93 cases) than indigenous cases (26 cases) were observed; conversely, in 2013 and 2014, more indigenous cases (49) than imported cases (42) were reported. In 2015 there were 20 imported cases and only 7 indigenous cases. Finally, in 2016, there were 47 indigenous cases and 28 imported cases. The mapping of cases by municipality and country of origin was possible with GIS analyses. Conclusion While Cape Verde remains on track to achieve malaria elimination by 2020 owing to the reduction of the annual incidence to below 0.1%, the country still records cases of indigenous and imported malaria. However, the indigenous cases are exclusively confined to the Santiago and Boavista islands, while the imported cases recorded nationwide originate only from the African continent, mainly from adult men from the Lusophone countries. Cape Verde needs to target interventions to remove residual foci on Santiago and Boavista islands to reduce malaria lethality to zero and prevent its reintroduction from African countries via transmission across the archipelago. Cape Verde is a good example of local authority’s commitment to tackle malaria and work towards its elimination by strengthening the health and surveillance systems

    Spatiotemporal characterisation and risk factor analysis of malaria outbreak in Cabo Verde in 2017

    No full text
    Abstract Background Cabo Verde is a country that has been in the pre-elimination stage of malaria since the year 2000. The country is still reporting cases, particularly in the capital of Praia, where more than 50% of the national population live. This study aims to examine the spatial and temporal epidemiological profile of malaria across the country during the 2017 outbreak and to analyse the risk factors, which may have influenced the trend in malaria cases. Methods Longitudinal data collected from all malaria cases in Cabo Verde for the year 2017 were used in this study. The epidemiological characteristics of the cases were analysed. Local and spatial clusters of malaria from Praia were detected by applying the Cluster and Outlier Analysis (Anselin Local Moran’s I) to determine the spatial clustering pattern. We then used the Pearson correlation coefficient to analyse the relationship between malaria cases and meteorological variables to identify underlying drivers. Results In 2017, 446 cases of malaria were reported in Cabo Verde with the peak of cases in October. These cases were primarily Plasmodium falciparum infections. Of these cases, 423 were indigenous infections recorded in Praia, while 23 were imported malaria cases from different African countries. One case of P. vivax infection was imported from Brazil. Spatial autocorrelation analysis revealed a cluster of high-high malaria cases in the centre of the city. Malaria case occurrence has a very weak correlation (r = 0.16) with breeding site location. Most of the cases (69.9%, R 2 = 0.699) were explained by the local environmental condition, with temperature being the primary risk factor followed by relative humidity. A moderately positive relationship was noted with the total pluviometry, while wind speed had a strong negative influence on malaria infections. Conclusions In Cabo Verde, malaria remains a serious public health issue, especially in Praia. The high number of cases recorded in 2017 demonstrates the fragility of the situation and the challenges to eliminating indigenous malaria cases and preventing imported cases. Mosquito breeding sites have been the main risk factor, while temperature and precipitation were positively associated with malaria infection. In light of this study, there is an urgent need to reinforce control strategies to achieve the elimination goal in the country

    Urban malaria vector bionomics and human sleeping behavior in three cities in Senegal

    No full text
    Abstract Background Malaria is endemic in Senegal, with seasonal transmission, and the entire population is at risk. In recent years, high malaria incidence has been reported in urban and peri-urban areas of Senegal. An urban landscape analysis was conducted in three cities to identify the malaria transmission indicators and human behavior that may be driving the increasing malaria incidence occurring in urban environments. Specifically, mosquito vector bionomics and human sleeping behaviors including outdoor sleeping habits were assessed to guide the optimal deployment of targeted vector control interventions. Methods Longitudinal entomological monitoring using human landing catches and pyrethrum spray catches was conducted from May to December 2019 in Diourbel, Kaolack, and Touba, the most populous cities in Senegal after the capital Dakar. Additionally, a household survey was conducted in randomly selected houses and residential Koranic schools in the same cities to assess house structures, sleeping spaces, sleeping behavior, and population knowledge about malaria and vector control measures. Results Of the 8240 Anopheles mosquitoes collected from all the surveyed sites, 99.4% (8,191) were An. gambiae s.l., and predominantly An. arabiensis (99%). A higher number of An. gambiae s.l. were collected in Kaolack (77.7%, n = 6496) than in Diourbel and Touba. The overall mean human biting rate was 14.2 bites per person per night (b/p/n) and was higher outdoors (15.9 b/p/n) than indoors (12.5 b/p/n). The overall mean entomological inoculation rates ranged from 3.7 infectious bites per person per year (ib/p/y) in Diourbel to 40.2 ib/p/y in Kaolack. Low anthropophilic rates were recorded at all sites (average 35.7%). Of the 1202 households surveyed, about 24.3% of household members slept outdoors, except during the short rainy season between July and October, despite understanding how malaria is transmitted and the vector control measures used to prevent it. Conclusion Anopheles arabiensis was the primary malaria vector in the three surveyed cities. The species showed an outdoor biting tendency, which represents a risk for the large proportion of the population sleeping outdoors. As all current vector control measures implemented in the country target endophilic vectors, these data highlight potential gaps in population protection and call for complementary tools and approaches targeting outdoor biting malaria vectors. Graphical Abstrac
    corecore