10 research outputs found

    The p56lck SH2 domain mediates recruitment of CD8/p56lck to the activated T cell receptor/CD3/zeta complex.

    No full text
    The CD4 or CD8 co-receptors and the T cell receptor (TCR) are though to interact with the same antigen-presenting major histocompatibility complex molecule in a stable ternary complex. Therefore, the TCR and its co-receptor need to come into close proximity on the surface of the T cell. We have previously shown that the interaction of the p56lck SH2 domain with zeta-associated, tyrosine phosphorylated ZAP-70 and Syk kinases leads to an enhanced association of CD4 with TCR/CD3/zeta complex after CD3 stimulation of Jurkat cells. In this report, we analyzed whether a similar mechanism can mediate recruitment of the CD8 alpha alpha and CD8 alpha beta isoforms to the TCR. We demonstrate in vivo in association of CD8 alpha alpha/p56lck with the tyrosine kinase ZAP-70 after CD3 stimulation of Jurkat cells. A phosphopeptide competing in vitro for the binding of tyrosine phosphorylated proteins to the SH2 domain of p56lck specifically impedes the association of ZAP-70 with CD8 alpha alpha/p56lck without affecting the zeta/ZAP-70 interaction. The same peptide is able to compete for the activation-dependent association of the CD8 alpha alpha or CD8 alpha beta isoform with the TCR/CD3/zeta complex. Moreover, co-precipitation of the TCR with both CD8 isoforms was observed after CD3 stimulation. These findings strongly suggest that the p56lck SH2 domain mediates recruitment of CD8/p56lck to the activated TCR/CD3/zeta complex

    The murine interleukin-2 receptor gamma chain gene: organization, chromosomal localization and expression in the adult thymus.

    No full text
    Defects in the interleukin-2 receptor gamma (IL-2R gamma) chain in the man result in an X-linked severe combined immunodeficiency, SCIDX1, characterized by an absence of T-cell differentiation. This phenotype may result from pertubations in IL-2, IL-4-, IL-7- or IL-15-mediated signaling, as the IL-2R gamma chain forms an integral component of these receptor systems. We have isolated and characterized cDNA and genomic clones for the murine IL-2R gamma. The gene (Il2rg) is well conserved between mouse and man with respect to overall structure and size, and contains regions of high conservation in the promoter region as well. Il2rg maps to mouse X chromosome region 40, in a region of synteny with human Xq12-13.1. We have also explored the expression of the IL-2R gamma during thymocyte development. IL-2R gamma transcripts are detected in the earliest thymocyte precursor cells and persist throughout intrathymic development into the mature peripheral compartment. Genomic clones for the murine IL-2R gamma will allow for further studies on the regulation and function of this gene in vivo

    Th2 lymphoproliferative disorder of LatY136F mutant mice unfolds independently of TCR-MHC engagement and is insensitive to the action of Foxp3+ regulatory T cells.

    No full text
    Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder

    An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection

    No full text

    Nevoid Basal Cell Carcinoma (Gorlin) Syndrome

    No full text
    corecore