3 research outputs found
A Study of a Mini-drift GEM Tracking Detector
A GEM tracking detector with an extended drift region has been studied as
part of an effort to develop new tracking detectors for future experiments at
RHIC and for the Electron Ion Collider that is being planned for BNL or JLAB.
The detector consists of a triple GEM stack with a small drift region that was
operated in a mini TPC type configuration. Both the position and arrival time
of the charge deposited in the drift region were measured on the readout plane
which allowed the reconstruction of a short vector for the track traversing the
chamber. The resulting position and angle information from the vector could
then be used to improve the position resolution of the detector for larger
angle tracks, which deteriorates rapidly with increasing angle for conventional
GEM tracking detectors using only charge centroid information. Two types of
readout planes were studied. One was a COMPASS style readout plane with 400
micron pitch XY strips and the other consisted of 2x10mm2 chevron pads. The
detector was studied in test beams at Fermilab and CERN, along with additional
measurements in the lab, in order to determine its position and angular
resolution for incident track angles up to 45 degrees. Several algorithms were
studied for reconstructing the vector using the position and timing information
in order to optimize the position and angular resolution of the detector for
the different readout planes. Applications for large angle tracking detectors
at RHIC and EIC are also discussed.Comment: Submitted to the IEEE Transactions on Nuclear Scienc