20 research outputs found

    Energy dissipation in sheared wet granular assemblies

    Get PDF
    Energy dissipation in sheared dry and wet granulates is considered in the presence of an externally applied confining pressure. Discrete element simulations reveal that for sufficiently small confining pressures, the energy dissipation is dominated by the effects related to the presence of cohesive forces between the particles. The residual resistance against shear can be quantitatively explained by a combination of two effects arising in a wet granulate: (i) enhanced friction at particle contacts in the presence of attractive capillary forces and (ii) energy dissipation due to the rupture and reformation of liquid bridges. Coulomb friction at grain contacts gives rise to an energy dissipation which grows linearly with increasing confining pressure for both dry and wet granulates. Because of a lower Coulomb friction coefficient in the case of wet grains, as the confining pressure increases the energy dissipation for dry systems is faster than for wet ones

    Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits

    Get PDF
    Lithium-ion batteries are being used in increasingly demanding applications where safety and reliability are of utmost importance. Thermal runaway presents the greatest safety hazard, and needs to be fully understood in order to progress towards safer cell and battery designs. Here, we demonstrate the application of an internal short circuiting device for controlled, on-demand, initiation of thermal runaway. Through its use, the location and timing of thermal runaway initiation is pre-determined, allowing analysis of the nucleation and propagation of failure within 18 650 cells through the use of high-speed X-ray imaging at 2000 frames per second. The cause of unfavourable occurrences such as sidewall rupture, cell bursting, and cell-to-cell propagation within modules is elucidated, and steps towards improved safety of 18 650 cells and batteries are discussed

    Analysis of Damage in Metallic Materials by X-ray Tomography

    No full text
    International audienceno abstrac

    Ultra fast in situ X-ray micro-tomography: application to solidification of aluminium alloys

    No full text
    International audienceX-ray micro-tomography has been applied recently in a wide range of research fields (damage in materials, solidification ... ). Thanks to the high flux of synchrotrons and specific cameras the total time to acquire a scan was considerably reduced. The use of a specific camera based on CMOS technology allows dividing the acquisition time for a complete scan by a factor of 100. Therefore we have been able to perform in situ solidification of aluminium-copper alloys at high cooling rates (between 1 and 10 degrees C/s) and we will show results concerning the evolution of the microstructure in 3D in the early stage of solidification, in particular the morphology of the solid phase and the kinetics of growth

    Analysing the sintering of heterogeneous powder structures by in situ microtomography

    No full text
    International audienceThis work analyses the microstructure changes of various copper-based powder systems during sintering from 3D images provided by in situ synchrotron microtomography. The investigated systems include a copper powder with a wide particle size distribution of 0-63 mm poured into a quartz capillary, a pre-sintered copper compact with artificially created large pores and a mixture of copper and alumina particles. The experiments were carried out at the European Synchrotron in Grenoble, France. Powders were sintered up to 1060 degrees C under reducing atmosphere in a furnace located between the X-ray source and the detector. During each experiment, 3D images were taken at various times of the thermal cycle. We have obtained images with a resolution of 1.5 mu m and the time of acquisition of every image was similar to 1 min. Quantitative analysis of these images allowed the changes of various important parameters to be followed. Such parameters characterise the sintering process at the particle length scale: interparticle coordination, pore size distribution and particle centre-to-centre distance. Moreover, by tracking the displacement of each particle centre and comparing it to the displacement predicted by classical mean field assumption, we have been able to assess the magnitude of particle rearrangement occurring during sintering. From these data, the sintering behaviour of heterogeneous powder systems is discussed with particular emphasis of collective particle phenomena

    Void and Phase Evolution during the Processing of Bi-2212 Superconducting Wires monitored by combined fast Synchrotron Micro-tomography and X-Ray Diffraction

    No full text
    Recent study of the current-limiting mechanisms in Bi-2212 round wires has suggested that agglomeration of the residual Bi-2212 powder porosity into bubbles of filament-diameter size occurs on melting the Bi-2212 filaments. These pores introduce a major obstacle to current flow, which greatly reduces the critical current density (Jc). Here we present an in situ non-destructive tomographic and diffraction study of the changes occurring during the heat treatment of wires and starting powder, as well as a room temperature study of ex situ processed wires. The in situ through-process study shows that the agglomeration of residual porosity is more complex than previously seen. Filament changes start with coalescence of the quasi-uniform and finely divided powder porosity into lens-shaped defects at about 850 0C when the Bi-2201 impurity phase decomposes before the Bi-2212 starts to melt. These lens-shaped voids grow to bubbles of a filament diameter on melting of the Bi-2212 and continue to lengthen and then to agglomerate across multiple filaments while the filaments are in the liquid state. The experiment makes clear why melt processing is vital to developing high Jc and also shows how rearrangement of the residual filament porosity on melting imposes a strong longitudinal inhomogeneity in each filament. Reducing the bubble density is clearly an important path to reaching much higher Jc values in Bi-2212 round wires. Synchrotron micro-tomography is an exceptionally powerful technique for studying the spatial extent of the porosity on a scale of about 2 µm and larger
    corecore