2 research outputs found

    Implementation of ultrasonic sensing for high resolution measurement of binary gas mixture fractions

    Get PDF
    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions

    Implementations of Custom Sonar Instruments for Binary Gas Mixture and Flow Analysis in the ATLAS Experiment at the CERN LHC

    No full text
    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom microcontroller-based electronics, we have developed sonar instruments, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with sound velocity vs. molar composition look-up curves to obtain the binary mixture at a given temperature and pressure. The look-up curves may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instruments and their performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instruments can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required
    corecore