36 research outputs found

    A multi-parametric wearable system to monitor neck movements and respiratory frequency of computer workers

    Get PDF
    Musculoskeletal disorders are the most common form of occupational ill-health. Neck pain is one of the most prevalent musculoskeletal disorders experienced by computer workers. Wrong postural habits and non-compliance of the workstation to ergonomics guidelines are the leading causes of neck pain. These factors may also alter respiratory functions. Health and safety interventions can reduce neck pain and, more generally, the symptoms of musculoskeletal disorders and reduce the consequent economic burden. In this work, a multi-parametric wearable system based on two fiber Bragg grating sensors is proposed for monitoring neck movements and breathing activity of computer workers. The sensing elements were positioned on the neck, in the frontal and sagittal planes, to monitor: (i) flexion-extension and axial rotation repetitions, and (ii) respiratory frequency. In this pilot study, five volunteers were enrolled and performed five repetitions of both flexion-extension and axial rotation, and ten breaths of both quite breathing and tachypnea. Results showed the good performances of the proposed system in monitoring the aforementioned parameters when compared to optical reference systems. The wearable system is able to well-match the trend in time of the neck movements (both flexion-extension and axial rotation) and to estimate mean and breath-by-breath respiratory frequency values with percentage errors ≀6.09% and ≀1.90%, during quiet breathing and tachypnea, respectively

    ALICE: Physics Performance Report, Volume I

    Get PDF
    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 900 physicists and senior engineers, from both nuclear and high-energy physics, from about 80 institutions in 28 countries. The experiment was approved in February 1997. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2001 and construction has started for most detectors. Since the last comprehensive information on detector and physics performance was published in the ALICE Technical Proposal in 1996, the detector as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) will give an updated and comprehensive summary of the current status and performance of the various ALICE subsystems, including updates to the Technical Design Reports, where appropriate, as well as a description of systems which have not been published in a Technical Design Report. The PPR will be published in two volumes. The current Volume I contains: 1. a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, 2. relevant experimental conditions at the LHC, 3. a short summary and update of the subsystem designs, and 4. a description of the offline framework and Monte Carlo generators. Volume II, which will be published separately, will contain detailed simulations of combined detector performance, event reconstruction, and analysis of a representative sample of relevant physics observables from global event characteristics to hard processes

    Feasibility assessment of a piezoresistive sensor based on graphene nanoplatelets for respiratory monitoring

    No full text
    The demand for wearable systems devoted to monitoring respiratory activity is growing more and more. This interest is mainly related to the possibility of remotely monitoring this activity that is both sensitive to several psychological and physiological stressors and correlated to a variety of pathologies. Among several solutions, sensing elements based on nanocomposite films have gained broad interest for instrumenting wearable systems.In this study, we focused on designing and developing a stretchable sensing element realized with graphene nanoplatelets (GNP) ink. The proposed element has been characterized to assess its metrological properties in terms of sensitivity, calibration curve, and hysteresis error. Finally, a pilot study involving two healthy volunteers has assessed its feasibility for estimating respiratory rate. The trials are performed under two respiratory conditions (i.e., eupnea and tachypnea)

    Single-plane neck movements and respiratory frequency monitoring: a smart system for computer workers

    No full text
    Prolonged seated works are responsible of awkward poses (e.g., excessive neck forward flexion) and job stressful conditions. Musculoskeletal disorders in the cervical spine region are common in computer workers who are often affected by neck pain. Neck pain has a high prevalence amongst the general population (from 42% to 69%). Reduction of workers productivity, absence from work and utilization of health care services worsen the socioeconomic burden associated to neck pain. Early evaluation of postural mistakes and changes in vital signs associated to job stress may be beneficial to reduce the incidence of neck pain. To reach this aim, wearable systems based on different sensing technologies have been developed. In the last decades, smart systems based on fiber Bragg grating sensors (FBGs) have been extensively used for instrumenting wearables. The present work aimed at preliminary assessing the capability of an FBG-based smart system in detecting single-plane neck movements associated to poor postural habits and respiratory frequency changes associated to stressful working conditions. Results confirmed the system capability in detecting flexion/extension movements in the sagittal plane and its good accuracy in monitoring respiratory frequency during computer work

    Respiratory rate monitoring of video terminal operators based on fiber optic technology

    No full text
    Recognition of occupational stressors is a goal of primary importance to improve the psycho-physical health of workers. Many studies agree in considering the respiratory rate (RR) as a key parameter to be monitored since changes from normal physiological ranges can be closely related to states of mental and physical stress. Despite the wide availability of solutions devoted to RR detection, the utilization of light and unobtrusive wearable systems exploiting several sensing technologies is becoming more and more popular in recent years. Among others, fiber Bragg gratings (FBGs) are gaining momentum due to their valuable properties (e.g., lightness, multiplexing capability, high sensitivity etc.) which make them suitable to be integrated into garments and appropriate for RR monitoring purpose. In this work, the feasibility assessment of an FBG-based wearable system for RR detection in a static occupational scenario is presented. A chest strap instrumented with two flexible sensors based on an FBG technology was exploited to perform 40 min of RR tracking on two video terminal workers. The proposed system was able to measure the respiratory signal over a prolonged time and showed high capability to estimate RR when compared to a reference instrument, as evinced by the obtained values of mean absolute error (MAE), always ≀ 1 bpm

    Smart textile based on piezoresistive sensing elements for respiratory monitoring

    No full text
    Wearable systems are gaining large interest in applications related to the monitoring of physiological parameters. Piezoresistive strain sensors are a valid option to develop wearables for several medical applications. Among them, respiratory monitoring can be performed by recording chest movements. The aim of this paper is threefold: 1) the experimental assessment of elastic piezoresistive textile; 2) the influence of length and width on piezoresistive response; and 3) the use of these elements to develop a smart textile (ST) for respiratory monitoring. The ST consists of six piezoresistive elements. The static calibration and the hysteresis analysis were carried out to assess the characteristics of the piezoresistive elements. The feasibility assessment of the ST for respiratory monitoring was performed on four healthy volunteers under two conditions (i.e., quiet breathing and tachypnea). Respiratory frequency values were estimated by the ST and compared with the ones gathered by means of a reference system (i.e., a motion capture system). Length and width influence both the sensitivity and hysteresis of the piezoresistive element. Regarding the ST performance, good agreement with data provided by the reference system was found. Indeed, results obtained by considering the output of single sensing elements and their sum were promising: The difference between the average respiratory frequency was always lower than 1% and 4% during quiet breathing and tachypnea, respectively. The proposed ST seems to be suitable for respiratory frequency monitoring in a wide range of values, where unobtrusiveness is of great value

    Single-plane neck movements and respiratory frequency monitoring: A smart system for computer workers

    No full text
    Prolonged seated works are responsible of awkward poses (e.g., excessive neck forward flexion) and job stressful conditions. Musculoskeletal disorders in the cervical spine region are common in computer workers who are often affected by neck pain. Neck pain has a high prevalence amongst the general population (from 42% to 69%). Reduction of workers productivity, absence from work and utilization of health care services worsen the socioeconomic burden associated to neck pain. Early evaluation of postural mistakes and changes in vital signs associated to job stress may be beneficial to reduce the incidence of neck pain. To reach this aim, wearable systems based on different sensing technologies have been developed. In the last decades, smart systems based on fiber Bragg grating sensors (FBGs) have been extensively used for instrumenting wearables. The present work aimed at preliminary assessing the capability of an FBG-based smart system in detecting single-plane neck movements associated to poor postural habits and respiratory frequency changes associated to stressful working conditions. Results confirmed the system capability in detecting flexion/extension movements in the sagittal plane and its good accuracy in monitoring respiratory frequency during computer work

    Cardiac monitoring with a smart textile based on polymer-encapsulated FBG: Influence of sensor positioning

    No full text
    In recent years, wearables are exploding in popularity as unobtrusive devices able to extend traditional healthcare delivery systems. Smart textiles are one of the main innovative types of wearables used for non-invasive and continuous monitoring of cardiac activity. A prominent solution is based on the detection of vibrations induced on the chest surface by the heart beating (i.e., precordial motions). In the literature, different sensor positions have been investigated, but it appears to be a lack of accepted standard points for the detection of heart-induced motions. In this work, a smart textile based on fiber Bragg grating (FBG) sensor has been proposed to detect the precordial motions on the chest. The feasibility of the smart textile for cardiac monitoring has been evaluated on three volunteers at three measurement points. Then, the influence of the measurement site on the response of the smart textile has been preliminarily assessed in terms of peak-to-peak amplitude of the signal. The signal amplitude is greater than the noise, so it allows detecting precordial motions. These promising results foster future investigations on the capability and performance of the system in estimating heart rate. Further tests will also be devoted to finding out the optimal measurement points to standardize the sensors positioning in this specific application

    A Fully Integrated FBG-Based Wearable Device and Protocol for Breathing Monitoring

    No full text
    In this work, a new fully embedded wearable device for the continuous measurement of respiratory variables via Fiber Bragg Grating (FBG) sensors is introduced. An experimental protocol for the assessment of its performance in the monitoring of breathing activity and detection of physical fatigue is proposed as well
    corecore