3,320 research outputs found

    Detection of short Gamma-Ray Bursts with CTA through real-time analysis

    Get PDF
    With respect to the current IACTs, CTA will cover a larger energy range (~20 GeV - 300 TeV) with one order of magnitude better sensitivity. The facility will be provided with a real-time analysis (RTA) software that will automatically generate science alerts and analyse data from on-going observations in real-time. The RTA will play a key role in the search and follow-up of transients from external alerts (i.e. from on-space gamma-ray missions, observatories operating at other energy bands or targets of opportunity provided by neutrinos and gravitational waves detectors). The scope of this study was to investigate the ctools software package feasibility for the RTA, adopting a full-field of view maximum likelihood analysis method. A prototype for the RTA was developed, with natively implemented utilities where required. Its performance was extensively tested for very-short exposure times (far below the lower limit of current Cherenkov science) accounting for sensitivity degradation due to the non-optimal working condition expected of the RTA. The latest IRFs, provided by CTA Performance, were degraded via effective area reduction for this purpose. The reliability of the analysis methods was tested by means of the verification of Wilks' theorem. Through statistical studies on the pipeline parameter space (i.e. minimum required exposure time), the performance was evaluated in terms of localization precision, detection significance and detection rates at short-timescales using the latest available GRB afterglow templates for the source simulation. Future improvements involve further tests (i.e. with an updated population synthesis) as well as post-trials correction of the detection significance. Moreover, implementations allowing the pipeline to dynamically adapt to a range of science cases are required. Prospects of forthcoming collaboration may involve the integration of this pipeline within the on-going work of the gamma-ray bursts experts of CTA Consortium

    CFD-based methodology for the characterization of the combustion process of a passive pre-chamber gasoline engine

    Get PDF
    Pre-chamber (PC) ignition systems, enabling Turbulent Jet Ignition (TJI) combustion, represent a promising technology to extend the lean limit of Spark Ignition Internal Combustion Engines. Indeed, the higher ignition energy provided by the turbulent jets contributes to the limitation of combustion duration and variability even in diluted conditions. However, a detailed analysis of the combustion process is needed to maximize the performance of the system. More specifically, the interaction between the chemical and the turbulent scales are key factors in assessing the probabilities of main chamber (MC) ignition, determining the ignition pattern, and characterizing the combustion process. For this reason, the development of reliable numerical models is a crucial factor to pave the way toward a deeper understanding of details concerning TJI combustion. In the present work, a 3D-CFD numerical model was validated against experimental data at 4000 rpm, in stoichiometric and lean (i.e., λ = 1.2) conditions in a single-cylinder gasoline engine equipped with a passive pre-chamber. In both operations, the evolution of the turbulent combustion regimes over the whole combustion process was investigated, highlighting analogies and differences between the selected operative conditions. Additionally, a methodology to characterize the MC ignition and combustion process, able to describe the different phases of the interaction between PC and MC, and assess the thermal, turbulent, and chemical effects of the turbulent jets is presented

    Inflammaging at ocular surface: clinical and biomolecular analyses in healthy volunteers

    Get PDF
    PURPOSE. To assess the ocular surface in volunteers who consider themselves as healthy, in order to evaluate how para-inflammatory mechanisms fail with age, and thus investigate the phenomenon of "InflammAging.''METHODS. In this observational prospective cohort study, volunteers were categorized into three groups according to age: young (19-40 years), middle-aged (41-60 years), and older adults (61-93 years). Clinical assessments included tear breakup time (T-BUT) and Schirmer test type I. Dry eye symptoms were evaluated by the Ocular Surface Disease Index (OSDI) questionnaire. Conjunctival mRNA and protein expression of intercellular adhesion molecule-1 (ICAM-1), MUC5AC, and IL-8 were measured by real-time PCR and immunofluorescence.RESULTS. A total of 82 volunteers (38 males and 44 females) were enrolled. T-BUT decreased significantly with increasing age (young: 11.13 +/- 0.18 seconds; middle-aged: 10.83 +/- 0.56 seconds; older: 9.00 +/- 1.00 seconds, P < 0.05). Schirmer test values decreased significantly with age (young: 20.6 +/- 1.0 mm; middle-aged: 19.2 +/- 1.2 mm; older: 16.0 +/- 1.1 mm, P < 0.05). OSDI scores increased with age in both groups, but they were substantially higher in women. Conjunctival expression of inflammatory markers ICAM-1, IL-8, and MUC5AC increased with age.CONCLUSIONS. Clinical signs, symptoms, and biomarkers of chronic inflammation increased with age in a cohort of volunteers who considered themselves healthy, indicating an age-related progressive impairment of ocular surface system function

    The Second AGILE MCAL Gamma-Ray Burst Catalog: 13 yr of Observations

    Get PDF
    We present the results of a systematic search and analysis of GRBs detected by the Astrorivelatore Gamma ad Immagini LEggero (AGILE) MiniCALorimeter (MCAL; 0.4–100 MeV) over a time frame of 13 yr, from 2007 to 2020 November. The MCAL GRB sample consists of 503 bursts triggered by MCAL, 394 of which were fully detected onboard with high time resolution. The sample consists of about 44% short GRBs and 56% long GRBs. In addition, 109 bursts triggered partial MCAL onboard data acquisitions, providing further detections that can be used for joint analyses or triangulations. More than 90% of these GRBs were also detected by the AGILE Scientific RateMeters (RMs), providing simultaneous observations between 20 keV and 100 MeV. We performed spectral analysis of these events in the 0.4–50 MeV energy range. We could fit the time-integrated spectrum of 258 GRBs with a single power-law model, resulting in a mean photon index 〈β〉of−2.3. Among them, 43 bursts could also be fitted with a Band model, with peak energy above 400 keV, resulting in a mean low-energy photon index 〈α〉 = −0.6, a mean high-energy photon index 〈β〉 = −2.5, and a mean peak energy 〈Ep〉 = 640 keV. The AGILE MCAL GRB sample mostly consists of hard-spectrum GRBs, with a large fraction of short-duration events. We discuss properties and features of the MCAL bursts, whose detections can be used to perform joint broad-band analysis with other missions, and to provide insights on the high-energy component of the prompt emission in the tens of mega electron volt energy range.publishedVersio

    Agilepy: A Python framework for AGILE data

    Get PDF
    The Italian AGILE space mission, with its Gamma-Ray Imaging Detector (GRID) instrument sensitive in the 30 Me–50 GeV γray energy band, has been operating since 2007. Agilepy is an open-source Python package to analyse AGILE/GRID data. The package is built on top of the command-line version of the AGILE Science Tools, developed by the AGILE Team, publicly available and released by ASI/SSDC. The primary purpose of the package is to provide an easy to use high-level interface to analyse AGILE/GRID data by simplifying the configuration of the tasks and ensuring straightforward access to the data. The current features are the generation and display of sky maps and light curves, the access to \gray sources catalogues, the analysis to perform spectral model and position fitting, the wavelet analysis. Agilepy also includes an interface tool providing the time evolution of the AGILE off-axis viewing angle for a chosen sky region. The Flare Advocate team also uses the tool to analyse the data during the daily monitoring of the γray sky. Agilepy (and its dependencies) can be easily installed using Anaconda

    Protection against pertussis in humans correlates to elevated serum antibodies and memory B cells

    Get PDF
    Pertussis is a respiratory infection caused by Bordetella pertussis that may be particularly severe and even lethal in the first months of life when infants are still too young to be vaccinated. Adults and adolescents experience mild symptoms and are the source of infection for neonates. Adoptive maternal immunity does not prevent pertussis in the neonate. We compared the specific immune response of mothers of neonates diagnosed with pertussis and mothers of control children. We show that women have pre-existing pertussis-specific antibodies and memory B cells and react against the infection with a recall response increasing the levels specific serum IgG, milk IgA, and the frequency of memory B cells of all isotypes. Thus, the maternal immune system is activated in response to pertussis and effectively prevents the disease indicating that the low levels of pre-formed serum antibodies are insufficient for protection. For this reason, memory B cells play a major role in the adult defense. The results of this study suggest that new strategies for vaccine design should aim at increasing long-lived plasma cells and their antibodies
    • …
    corecore