15 research outputs found

    VEGF autocrine secretion is enhanced by EGFR activation trough ERK1/2 phosphorylation in human adrenocortical carcinoma cell lines

    No full text
    Adrenocortical cancer (ACC) is still orphan of medical treatment. Our preliminary data show that EGF induces ACC cell lines proliferation (+20 and +10% vs control in SW13 and NCI-H295 cell lines respectively). EGF receptor (EGFR) expression is higher and ubiquitous in SW13 cells, while it is weaker in NCI-H295 cells, where it is present only on the membrane. Aim of our study is to analyze EGFR downstream signalling in ACC cell lines. EGF induces VEGF synthesis, therefore we investigated EGF-induced VEGF secretion in ACC cells. EGF enhanced VEGF secretion only in SW13 cells while had weak effects on NCI-H295. In addition, a VEGF receptor (VEGFR) blocking antibody significantly reduced EGF effects on SW13 cells proliferation, while it had negligible effects on NCI-H295 cells. VEGF synthesis and secretion is controlled by PKCα, PKC β2 and ERK1/2, that are involved in EGFR downstream signalling. PKCα and PKC β2 were not modulated by treatment with EGF or with Sunitinib (an EGFR inhibitor), nor by the combination of EGF and Sunitinib. ERK1/2 phosphorylation was strongly enhanced by EGF, an effect slightly counteracted by Sunitinib. These effects were more evident in SW13 as compared to NCI-H295 cells. These data demonstrate a crosstalk between EGF and VEGF signalling pathways that is, at least in part, mediated by ERK 1/2, and could indicate novel molecular targets possibly useful in the future design of ACC medical therapy. Further studies are needed to deeply understand these pathways in ACC

    Protein Kinase C Delta restrains growth in ACTH-secreting pituitary adenoma cells

    No full text
    Protein Kinase C Delta (PRKCD) has been highlighted among disrupted pathways in corticotroph adenomas. PRKCD is expressed at low level in human corticotroph adenomas and controls cell cycle in vitro. Therefore, PRKCD may play an important role in the development/progression of corticotroph adenomas, warranting further studies to understand the role of PRKCD and related pathways in restraining pituitary cell growth. We evaluated PRKCD role in influencing cell behavior in terms of cell viability, hormone expression and protein expression profile, by silencing PRKCD in AtT-20/D16v-F2 cells. PRKCD silencing increases cell viability, enhances hormone expression and induces morphological changes associated with deregulation of adhesion molecules. PRKCD silencing is associated with an increase in Epithelial Growth Factor Receptor (EGFR) expression, a marker of tumor aggressive behavior, and sensitivity to anti-EGFR molecules. PRKCD might restrain corticotroph adenoma cells from acquiring an aggressive behavior, candidating PRKCD as a possible molecular target for the treatment of corticotroph adenomas

    Inhibition of epithelial growth factor receptor can play an important role in reducing cell growth and survival in adrenocortical tumors

    No full text
    Medical treatment of adrenocortical carcinoma (ACC) is still far from optimal, since even molecular targeted therapy failed to demonstrate striking results. Clinical trials enrolling ACC patients with high tissue vascular endothelial growth factor receptor (VEGFR) expression levels showed controversial results after treatment with Sunitinib, possibly due to variability in the expression of drug targets, which include epidermal growth factor receptor (EGFR). To better clarify this issue, we evaluated whether VEGFR may play a crucial role in ACC responsiveness to Sunitinib and whether EGFR may represent an alternative target in ACC medical treatment, by employing two ACC cell lines, the NCI-H295 and SW13 cells lines, and adrenocortical tissues primary cultures. Our data show that VEGF/VEGFR system may not be crucial in modulating ACC proliferation and responsiveness to Sunitinib. In addition, by cell viability, proliferation and caspase activation assays we found that Sunitinib inhibits adrenocortical cell viability acting, at least in part, through EGFR, that, in turn, is crucial for EGF proliferative effect on adrenocortical cells. The latter depends, at least in part, on ERK 1/2 activation. An EGFR selective inhibitor was highly effective in reducing cell viability in an adrenocortical tumor primary culture and in the SW13 cells, which express high EGFR levels. Our results suggest that EGFR inhibitors could represent effective therapeutic tools in ACC patients whose tumors express high EGFR levels, that, in turn, may be considered a predictive factor of response. Accurate molecular tumor profiling is crucial to predict drug efficacy and to tailor ACC patients therapeutic approach

    Igf-I influences everolimus activity in medullary thyroid carcinoma.

    Get PDF
    CONTEXT: Medullary thyroid carcinoma (MTC) is a rare tumor originating from thyroid parafollicular C cells. It has been previously demonstrated that insulin-like growth factor I (IGF-I) protects MTC from the effects of antiproliferative drugs. Everolimus, an mTOR inhibitor, has shown potent antiproliferative effects in a human MTC cell line, TT, and in two human MTC primary cultures. OBJECTIVE: To verify whether IGF-I may influence the effects of everolimus in a group of human MTC primary cultures. DESIGN: We collected 18 MTCs that were dispersed in primary cultures, treated without or with 10 nM-1 μM everolimus and/or 50 nM IGF-I. Cell viability was evaluated after 48 h, and calcitonin (CT) secretion was assessed after a 6 h incubation. IGF-I receptor downstream signaling protein expression profile was also investigated. RESULTS: Everolimus significantly reduced cell viability in eight MTC [by ~20%; P < 0.01 vs. control; everolimus-responders (E-R) MTCs], while cell viability did not change in 10 MTCs [everolimus-non-responders (E-NR) MTCs]. In E-R MTCs, IGF-I blocked the antiproliferative effects of everolimus that did not affect CT secretion, but blocked the stimulatory effects of IGF-I on this parameter. IGF-I receptor downstream signaling proteins were expressed at higher levels in E-NR MTC as compared to E-R MTCs. CONCLUSION: IGF-I protects a subset of MTC primary cultures from the antiproliferative effects of everolimus and stimulates CT secretion by an mTOR mediated pathway that, in turn, may represent a therapeutic target in the treatment of aggressive MTCs

    MTOR inhibitors response and mTOR pathway in pancreatic neuroendocrine tumors

    No full text
    Medical therapy of pancreatic neuroendocrine tumors (P-NET) may take advantage of Everolimus treatment. However, the extent of therapeutic response cannot be predicted. This study was aimed to identify the possible predictive markers of response to Everolimus in P-NET. We found that Everolimus reduced the cell viability and induced apoptosis in primary cultures of 6 P-NET (P-NET-R), where the proliferative and antiapoptotic effects of IGF1 were blocked by Everolimus. On the contrary, 14 P-NET primary cultures (P-NET-NR) were resistant to Everolimus and IGF1, suggesting an involvement of PI3K/AKT/mTOR pathway in the mechanism of resistance. The response to Everolimus in vitro was associated with an active AKT/mTOR pathway and seemed to be associated with a greater clinical aggressiveness. In addition, a patient sensitive to Everolimus in vitro was sensitive to this drug in vivo also and showed a positive p-AKT immunohistochemistry (IHC) at tissue level. Similarly, a patient resistant to Everolimus treatment after surgery was not sensitive to the drug in vitro and had a negative p-AKT IHC staining. Therefore, present data confirm that P-NET primary cultures may be considered a model for testing medical treatment efficacy and that IHC characterization of p-AKT might help in identifying human P-NET who can benefit from Everolimus treatment. These data encourage conducting a prospective multicenter study involving different groups of P-NET patients treated with Everolimus
    corecore