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[Via del mevalonato: ruolo dei bifosfonati e delle statine]

Introduction

Osteoporosis and atherosclerotic disease are
both pathology affecting the elderly. Even more
evidences suggest existence of links between bone
and vascular diseases. Osteoporosis is associated
with both atherosclerosis and vascular calcification,
whereas calcification is a common feature of ather-
osclerotic plaques(1-3).

Bisphosphonates (BPs) inhibit bone resorption
and are used for the treatment of osteoporosis,
whereas statins inhibit cholesterol biosynthesis and
are used for the treatment of atherosclerosis and
lipid metabolic diseases. However, the mechanism
these two classes of drugs act, at cellular level, may
not be mutually exclusive, and the common target
of action might be the mevalonate pathway. Some
early clinical data validate this hypothesis, suggest-
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SUMMARY

Cardiovascular diseases, i.e. high blood pressure, coro-
nary heart disease, and stroke, and osteoporosis are public
health problems, with several epidemiological links, and they
might be related to each other in terms of pathogenesis and
therapeutic agents. Bisphosphonates inhibit bone resorption
and are used in the treatment of osteoporosis, whereas statins
inhibit cholesterol biosynthesis and are used for the treatment
of atherosclerosis and lipid metabolic disorders. Some late clin-
ical studies suggested bisphosphonates may have beneficial
effect in vivo on atherosclerotic progression, lipid profiles, and
cardiovascular morbidity and mortality, whereas statins might
increase bone density, and reduce fracture risk, even if properly
designed prospective studies are needed to clearly define clini-
cal effects and potential new roles for these old agents.
Moreover mechanism by which these two classes of drugs act,
at cellular level, may not be mutually exclusive, and the com-
mon target of action might be the mevalonate pathway. In this
review, we focused on in vitro and in vivo interactions between
mevolanate pathway, bisphosphonates, and statins, examining
the possible therapeutic consequences of these links. 

Key words: Mevalonate pathway, bisphosphonates, statins,
osteoporosis, cardiovascular disease 

RIASSUNTO

Le malattie cardiovascolari, quali l’ipertensione arterio-
sa, le coronaropatie e l’ictus, e l’osteoporosi rappresentano
importanti problemi di sanità pubblica, con multipli collega-
menti, sia di tipo epidemiologico, che patogenetico e terapeuti-
co. I bifosfonati inibiscono il riassorbimento osseo e sono uti-
lizzati per il trattamento dell’osteoporosi, mentre le statine ini-
biscono la biosintesi epatica del colesterolo e vengono utilizza-
te nel trattamento dell’aterosclerosi e dei disturbi del metaboli-
smo lipidico. Alcuni recenti studi clinici hanno, però, eviden-
ziato come i bifosfonati potrebbero possedere, anche, effetti
positivi, in vivo, sulla progressione dell’aterosclerosi, sul profi-
lo lipidico e sulla morbilità e mortalità cardiovascolare, men-
tre le statine potrebbero incrementare la densità minerale
ossea e ridurre il rischio di fratture, anche se sono necessari
ulteriori studi, prospettici e specificatamente progettati, per
chiarire, definitivamente, il nuovo potenziale terapeutico di
questi farmaci ‘antichi’. Inoltre, i meccanismi molecolari attra-
verso cui queste due classi di farmaci agiscono sembrerebbero
non escludersi mutualmente, ed il bersaglio comune della loro
azione potrebbe essere la via del mevalonato. In questa review
abbiamo concentrato la nostra attenzione sulle possibili intera-
zioni, sia in vitro che in vivo, fra la via del mevalonato, i bifo-
sfonati e le statine, esaminandone le possibili conseguenze
terapeutiche.

Parole chiave: Via del mevalonato, bifosfonati, statine, osteo-
porosi, malattie cardiovascolari
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ing that BPs may have a beneficial in vivo effect on
atherosclerotic process and on plasma lipid levels,
whereas statins may increase bone density. Properly
designed prospective studies, that examine effect of
BPs on atherosclerotic progression, lipid profiles,
and cardiovascular morbidity and mortality, as well
as the effects of statins on bone density and frac-
tures, are needed to clearly define the clinical
effects and establish new potential therapeutic roles
for these agents(4-6). 

In this review, we focused on in vitro and in
vivo interactions between mevolanate pathway,
BPs, and statins, examining the possible therapeutic
consequences of these links.

The mevalonate pathway

One important biosynthetic route in eukariotes
is the mevalonate pathway, leading to isoprenoid
products, such as cholesterol, bile acids, dolichol,
ubiquinone, carotenoids, vitamin D, and steroid hor-
mones (Figure 1)(7-9). 

Membrane assembly, lipid uptake, glycopro-

tein synthesis, electron transport, and hormonal reg-
ulation are only possible if there is adequate pro-
duction of isoprenoids. Isoprenoids synthesis
begins from the precursor acetyl CoA, derived from
intermediary metabolism. Most of acetate is con-
verted to fatty acids, for energy storage, and much
of the remainder is diverted to mevalonate for iso-
prenoids synthesis, via the 3-hydroxy-3-methylglu-
taryl-CoA (HMG CoA) synthase and the HMG
CoA reductase. Mevalonate production is irre-
versible, and the enzyme HMG CoA reductase reg-

ulates this rate-limiting step. Mevalonate is subse-
quently phosphorilated, decarboxilated, and isomer-
ized to isopentenyl pyrophosphate (IPP), the basic
isoprenoid building block. Self-condensation of IPP
produces geranyl pyrophosphate (GPP), and an
additional IPP condensation step, mediated by the
enzyme farnesyl pyrophosphate (FPP) synthase,
yields FPP, the principal intermediate for all major
isoprenoids. Particularly, subsequent synthesis of
geranylgeranyl pyrophosphate (GGPP), mediated
by the enzyme GGPP synthase, leads to
ubiquinone, whereas synthesis of squalene leads,
throughout lanosterol, to cholesterol(10,11). 

Moreover, FPP and GGPP are essential for post-
translational lipid modification (prenylation and ger-
anylgeranylation) of low-molecular-weight guanosine
triphosphate (GTP)-binding regulatory proteins of Ras
superfamily (i.e. Rac, Rho, Rabs, Rans, Raps, Rals,
and so on), which are also GTPases, with farnesyl or
geranylgeranylisoprenoids groups. These post-transla-
tional modifications, or isoprenylation, need prenyl-
transferases farnesyltransferase (FTase) and geranyl-
geranyl transferase I (GGTase I), that catalyze the irre-
versible attachment of C15 farnesyl (Ras proteins) or
C20 geranylgeranyl (Rho proteins) moieties, respec-
tively, to the C-terminal region of these small
GTPases, thus modulating their intrinsic, intracellular,
activities. Ras superfamily proteins, usually, are
placed into plasma membrane, and to be translocated
here from cytoplasm, they need hydrophobic prenyl
groups, which are able to anchor them to intracellular
membranes. Only final cell-membrane fixation allows
Ras proteins to participate in their specific interac-
tions. Lack of protein isoprenylation leads to cytosolic
sequestration and loss of biological activity(12-14).

When activated, they are involved in the
receptor-coupled transduction of signals from extra-
cellular stimuli to cytoplasm and nucleus.
Multitudes of directly interacting targets have been
identified, including protein kinases, and a whole
range of “adaptor” proteins, so-called because they
bring together other proteins. There is yet no evi-
dence of function of these targets, and the way Rac
and Rho regulate their activities, but everything is
under feverish investigation. However, regulatory
proteins of Ras superfamily are implicated in regu-
lation of mitogen-activated protein (MAP) kinase
cascades, activation of transcription factors, gene
transcription, cytoskeletal rearrangement, vesicle
transport, secretion, phagocytosis, neurite out-
growth, osteoclasts apoptosis, and malignant trans-
formation(15-17). 
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Figure 1: the mevalonate pathway 



Particularly, various cellular processes, includ-
ing gene transcription, cytoskeletal rearrangement,
and malignant transformation are regulated by
activity of the small GTPase, Rac1, of the Ras
superfamily proteins(18-20). 

Activation of STAT3, a member of the family
of signal transducers and activators of transcription
(STATs) has been proved to be stimulated by con-
stitutively active Rac1 (Rac V12). Rac V12 induces
STAT3 activation through an indirect mechanism
involving autocrine production and action of inter-
leukin (IL)-6, a known mediator of STAT3
response. Particularly, induction of IL-6 secretion
and IL-6 receptor (IL-6R) expression result from
Rac V12 activity(21-23). 

Therefore, IL-6 activates multiple signalling
pathways, i.e. STAT-3 homodimer pathway, STAT1-
STAT3 heterodimer pathway, and Ras dependent
MAP kinase cascade. Several other cytokines,
belonging to IL-6 family (i.e. IL-11, oncostatin M,
leukemia inhibitor factor (LIF), ciliary neurotrophic
factor (CNTF), and cardiotropin-1 (CT-1)), use
gp130, the signal transducer of IL-6R, as a common
signal-transducing molecule, having, in this way,
similar biological activities(24-27). 

In turn, IL-6 mediated inflammation is the
common causative factor and therapeutic target for
atherosclerotic vascular disease and age-related dis-
orders, including osteoporosis, dementia,
Alzheimer’s disease, and type 2 diabetes. People
affected with conventional risks factors, i.e. smok-
ing, high blood pressure, high cholesterol, and like,
have higher incidence of cardiovascular diseases.
However, inflammation-related molecules are better
predictor of heart disease in subjects without those
risk factors. In the health, IL-6 levels are associated
with the highest risks for subclinical as well as for
clinical cardiovascular disease(28-30).

Moreover, isoprenoids generation, via meval-
onate pathway, is required for in vitro activated
monocytes IL-8 production, at least in part through
attenuation of the increase in mRNA in response to
lipopolysaccharide, granulocyte-macrophage
colony-stimulating factor, and phorbol myristate
acetate(31,32).

Isoprenoids are also required, in granulocytes,
for reduced nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase complex activation,
involved in pathogen killing during phagocytosis,
via the low-molecular-weight GTP-binding protein
Rac isoprenylation(33,34). 

Bisphosphonates and mevalonate pathway 

Currently, bisphosphonates (BPs) are the treat-
ments of choice, being powerful inhibitors of bone
resorption, among the therapeutic options for treat-
ment of osteoporosis, and other excessive bone
resorption disease, including Paget's disease of bone,
myeloma and osteolytic bone metastases(35-39). 

They are synthetic compounds, with high affinity
for calcium containing crystals, and selectively concen-
trate into the bones, binding to hydroxyapatite crystals.
They subsequently are locally and selectively taken up,
and absorbed to the bone mineral surfaces, where they
are able to remain for long, and to be, again and slowly,
released during phases of bone remodelling, interfering
with the action of the bone-resorbing osteoclasts. In
particular, yet unidentified mechanism, which can lead
to osteoclast apoptosis, seem to be the grounding BPs
may, after internalization, suppress osteoclast-mediated
bone resorption by(40,41).

BPs are chemically stable analogues of inorgan-
ic pyrophosphate, and are resistant to breakdown by
enzymatic hydrolysis. They consist of two side
chains, R(1) and R(2), and two atoms of phosphorus
linked to a single atom of carbon, forming a P-C-P
structure, which is totally resistant to enzymatic
hydrolysis. As the longest chain is responsible of the
effectiveness of the drugs, shortest one binds to min-
eral content of bone tissue. Requires a simple change
of the side chains to produce different BPs, including
currently used in the clinical practice ones(42,43).

BPs can be classified, at least, into two groups,
with different molecular mechanisms, depending on
the nature of the R(2) side chain(44,45). 

The simple non-nitrogen-containing BPs (such
as clodronate and etidronate) can be intracellularly
metabolized into a nonhydrolyzable, toxic, analogue
of adenosine triphosphate (ATP), which inhibits
ATP-dependent intracellular enzymes. Metabolite of
clodronate adenosine-5'-(β,γ-dichloromethylene)
triphosphate (AppCCl2p) can inhibits adenosine
diphosphate (ADP)/ATP translocase, with subse-
quent reduction of mitochondrial oxygen consump-
tion; this is, probably, the route by which clodronate
causes apoptosis of osteoclasts(46-49).

Most powerful nitrogen-containing BPs (such
as pamidronate, alendronate, risedronate, iban-
dronate, and zoledronate) are not metabolized in this
way, but can inhibit enzymes of mevalonate path-
way, in particular FPP synthase, thereby preventing
biosynthesis of isoprenoid compounds, that are
essential for the post-translational modification of
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Ras superfamily regulatory proteins. Late discover of
FPP synthase crystal structure may explain how BPs
can bind to active site and inhibit this enzyme, via
their critical N atoms. So the loss of osteoclast activi-
ty and induction of their apoptosis can be explained
by inhibition of protein prenylation and disruption of
function of these key regulatory proteins. Actually,
these regulatory factors, as intracellular “signal” pro-
teins, transducing extracellular signals, regulate a
variety of cellular processes required for osteoclasts
functions, including determination of cellular mor-
phology, cellular adhesion, formation of “ruffled bor-
der”, and apoptosis. This mechanism is responsible
for nitrogen-containing BPs suppression of osteo-
clastic bone resorption and reduction of bone
turnover, which leads to prevent fractures(49-52).

In addition, lately, it has been demonstrated
proinflammatory mediators regulation, monocyte
/macrophage system suppression, and anti-athero-
sclerotic properties seem to be controlled by BPs
activity(53). 

Nitrogen-containing BPs inhibit mevalonate
pathway and particularly FPP synthase leading to
depletion of isoprenoid products and, therefore, to
suppression of IL-6 mediated inflammation(54-57).

Moreover, vascular calcifications, such as coro-
nary and aortic calcification, are significant feature
of vascular pathology, and contribute to several car-
diovascular problems, such as systolic hypertension,
myocardial and peripheral ischemic disease, and
heart failure. Vascular calcification may be divided,
at least, in two different class, according to the fea-
tures of calcification itself: first is medial calcifica-
tion, between the cell layers of smooth muscle cells,
related to aging, diabetes and chronic renal failure;
the other is atherosclerotic calcification, in the inti-
ma, formed in the progression of atheromatous dis-
ease. Process of calcification, based on matrix vesi-
cle formation and mineralization, similar to bones
one, initiates vascular calcification. In addition, a lot
of bone regulatory factors have been shown to be
present in calcified atherosclerotic lesions(58-60). 

Evidences indicate BPs can inhibit in vitro
experimental development of atheromatous plaque,
and propose mechanisms for this action including:
inhibition of arterial mineralization and calcification,
by their marked accumulation and concentration in
human healthy and atherosclerotic arteries, their
strong affinity to hydroxyapatite, and their subse-
quent ability to inhibit ectopic calcification (calcium
deposition in soft tissues), or by enhancing produc-
tion of parathyroid hormone-related peptide from

vascular smooth muscle cells(40,61-64); inhibition of cel-
lular (macrophage) metabolism of atherogenic, mod-
ified, low-density lipoprotein (LDL)(65,66); foam cell
development shortening(65,67); and, latter, reduction of
atherogenic LDL-cholesterol, and increasing of pro-
tective high-density lipoprotein (HDL)-cholesterol,
in the plasma(68-70). 

In addition, BPs reduce human arterial contrac-
tile force to alpha-adrenergic and depolarizing stim-
uli, and exert an addictive inhibitory effect, on
human arterial contractions, with a Ca2++-channel
blocker(71).

A recent study, pointed out, how treatment, for
1 year, with cyclicl administration of etidronate, con-
ducted in 57 patients affected by type 2 diabetes
associated with osteopenia, leaded to statistically sig-
nificant reduction of carotid intima-media thickness,
demonstrated, by ultrasounds examination. This
affect occurred even though serum lipid levels and
cardiovascular parameters were unaffected(72,73). 

Contrariwise, two 3-year, randomized, placebo-
controlled clinical trials, including 417 elderly osteo-
porotic women, treated with ibandronate, given
either orally, or intravenously, demonstrated no sig-
nificant differences in atherosclerosis both in yearly
progression rate and in 3-year change, between the
different intervention groups. These findings suggest
that 3-year treatment with effective doses of iban-
dronate does not pose any cardiovascular risk in
terms of altering vascular calcification(74).

Eighty-seven postmenopausal women, with
moderate to severe osteoporosis, in another random-
ized, placebo-controlled clinical trial, were treated
with intravenous infusion of neridronate. Patients’
serum total cholesterol and serum triglycerides
showed marginal decreases, which were occasionally
significant. LDL-cholesterol and Apo B significantly
fell, whereas Apo AI and HDL-cholesterol rose pro-
gressively. Similar findings were obtained in four
postmenopausal women administering pamidronate
or alendronate high intravenous doses(75). 

In conclusion BPs, at least when given intra-
venously, induce remarkable and unexpected effects
on lipid metabolism leading to a final profile that
might be clinically relevant.

Statins and mevalonate pathway

Beyond cholesterol lowering, HMG CoA
reductase inhibitors (statins) have several others
actions. These pleiotropic actions include direct
effects on vascular tissue, inflammation, glucose
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metabolism, and bone(76-78). Many of these might be
mediated by inhibition of post-translational modifi-
cation (isoprenylation) of the GTP-binding regula-
tory proteins of Ras superfamily(79-81).

Vascular endothelia may benefit of statins
effects. In this setting, activated Ras proteins are
primary component in kinase signal-transducing
cascades, negatively involved in NO production. As
a matter of fact, there is effective reduction of Ras
proteins membrane concentration and activity, due
to statins inhibition of enzymes isoprenylation(82-84). 

Particularly, statins improve basal and stimula-
ted endothelium-dependent forearm blood flow res-
ponses, by increasing endothelial NO production
and consequent NO-dependent vasorelaxation(85). 

Statins up-regulate endothelial NO synthase
(eNOS) expression, and not less, reducing concen-
trations of LDL cholesterol, improve endothelial
derived vasodilation(86-89). 

In detail, statins, binding to endothelial and
vascular smooth muscle cells, activate Akt, a seri-
ne-threonine kinase, also activated by insulin/insu-
lin-like growth factor-I (IGF-I), which, in turn, pro-
motes phosphorilation and subsequent activation of
eNOS(89,90), and increases endothelial progenitor
cells(91).

In addition to affecting post-translational regu-
latory mechanisms, statins increases eNOS trans-
cription, stability, and protein level(92). 

Moreover, statins, not only increase endothe-
lial cell NO production, but also up-regulate the
inducible form of NOS (iNOS) in vascular smooth
muscle cells. Generally this enzyme is expressed
after vascular injury, and its induction, in these sta-
tes, seems to be beneficial for vascular function(93,94).

Finally, statins modulate actions and release of
vasoconstrictors agents (i.e. angiotensin II and
endothelin-1)(95,96). 

Statins, in hypercholesterolemic men, reverse
hypertensive responses to infused angiotensin II(97),
and reduce, in dose- and time-dependent way, the
expression of endothelin-1 in endothelial cells,
thus, reducing vascular resistance, and improving
blood flow in coronary and systemic vascular
beds(96,98). 

Late evidences pointed out anti-inflammatory
action of statins, as these drugs are able to decrease
C-reactive protein serum levels, independently
from LDL-cholesterol reduction(99,100).

Effectively, statins might affect many of the
events in the inflammatory cascade by inhibiting
receptor-dependent activation of signal-transducing

cascades. Actually, statins seem to: reduce leukocy-
te rolling, adherence, and transmigration in rodent
model of NO deficiency(101,102); reduce monocyte
chemoattractant protein-1 (MCP-1) expression, and
monocyte infiltration and proliferation in rat model
of coronary inflammation(100,103); attenuate adhesion
molecule expression on endothelial cells (i.e. P-
selectin, and intracellular adhesion molecule
[ICAM]-1)(104), and monocytes (CD11b)(105), in
absence of lipid lowering; reduce serum levels of
soluble P-selectin in patient affected with acute
coronary syndromes(106); reduce serum levels of
TNF-α and IL-1β in rat model associated with ele-
vated serum levels of these markers(107). 

Reduction of nuclear factor (NF)-κB activity
in vascular and inflammatory cells may suppress
adhesion molecules and cytokines production(100,108).

The complex of these observations points out
importance of statins in attenuating the inflammato-
ry process and the consequent impact on cardiovas-
cular risk reduction.  

Moreover, statins seem to reduce the risk of
developing diabetes. Both substrate delivery to
insulin-sensitive tissue, and modulation of insulin-
activated signalling cascades, which mediate gluco-
se uptake, might be controlled by statins. As afore-
said, statins increase eNOS expression, which may
result in increased capillary recruitment and gluco-
se disposal. Insulin also activates a series of kinase
cascades, which involve Akt and PI3K, resulting in
translocation of glucose transporters to cell mem-
brane and enhanced glucose uptake. These cascades
are inhibited by circulating cytokines. Statins, like
insulin, activate Akt and PI3K, thus improving glu-
cose uptake(109).

In addition, statins decrease cytokine levels,
and inhibit cellular cascades, such as Rho kinase,
that inactivate insulin receptor and signalling (90). 

However, mechanisms which link together sta-
tins and glucose metabolism and insulin sensibility,
are, yet, no totally understood, so further studies are
required(77,110,111). 

As described above, BPs, especially nitrogen-
containing ones, exert their cytotoxic effects on
osteoclasts by interfering with mevalonate pathway,
a step further downstream from the site of statins
action(112). 

Therefore, protective effect on bone metabo-
lism has been described as possible effect of thera-
py with HMG CoA reductase inhibitors. Precisely
because of their widespread use and the average
age of patients taking these drugs, prevention of
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bone loss and fractures would be a desirable side
effect. However, mechanisms how statins may
regulate bone metabolism are, yet, poorly defined. 

Mundy et al. demonstrated that statins enhance
new bone formation, both in vitro and in rodents.
This effect was associated with increased expres-
sion of the bone morphogenetic protein-2 (BMP-2)
gene, an osteoblast growth factor, in bone cells.
Furthermore, statins increased bone formation
when injected subcutaneously over the calvaria of
mice, and increased cancellous bone volume when
orally administered to rats(113,114). 

Sugiyama et al. showed simvastatin, a lypop-
hilic BPs, with elevated bone affinity, activate the
BMP-2 promoter, in human osteosarcoma cells,
whereas pravastatin, a hydrophilic BPs, do not.
Mevalonate, the downstream metabolite of HMG
CoA reductase, completely inhibit BMP-2 promoter
statin-mediated activation, indicating this last one
was result of enzyme inhibition(115).

Potential role of statins in bone formation,
probably by inducing the BMP-2, has been indica-
ted by above-mentioned studies(116-119). However,
new, fascinating, mechanisms of statins action have
been recently proposed, referring to Rho kinase(120)

and Akt/PI3K pathways(91,121). 
Another study evaluated effect of atorvastatin

on osteoblastic production of osteoprotegerin
(OPG) and receptor activator of the nuclear factor
κB ligand (RANKL), essential cytokines for osteo-
clast cell biology. Whereas RANKL promotes
osteoclast formation and activation, thus promoting
bone resorption, OPG acts as soluble decoy recep-
tor that antagonized the effects of RANKL.
Mentioned study pointed out, atorvastatin increased
OPG mRNA levels and protein secretion in human
osteoblasts, and enhanced expression of osteoblas-
tic differentiation markers, osteocalcin and alkaline
phosphatase. Human osteoblasts treated with subs-
trates of cholesterol biosynthesis, which are downs-
tream of HMG CoA reductase reaction (mevalona-
te, and geranylgeranyl pyrophosphate), reversed
atorvastatin-induced enhancement of OPG produc-
tion. We can, therefore, conclude that atorvastatin
enhances production of OPG and osteoblastic diffe-
rentiation(122). 

Contrariwise, few clinical trials have been
published to date on statins therapy effect on fractu-
re risk and bone metabolism marker levels. The
first case-control studies, managed by Wang et
al(123), and Meier et al.(124), on a large number of
patients, showed reduction in osteoporotic fractures

risk in the group of patients treated with statins,
compared to using other lipid-lowering drugs and to
control ones. 

Bias in selection of analysed populations may
explain controversial results of few other observa-
tional studies managed to analyse reduction of
osteoporotic fractures risk and statins therapy(125-128).
Moreover, all studies presented an undoubted limi-
tation: they were not randomised and so all infor-
mation they provided could not be considered as
unequivocal basis begin prescribing statins for
osteoporosis treatment on. 

Post-hoc analyses of two, large, secondary
prevention with statins interventional trials, the
Scandinavian Simvastatin Survival Study (4S) and
the Long-Term Intervention with Pravastatin in
Ischaemic Disease (LIPID) Study, displayed diffe-
rent results. Both studies were randomised, double-
blind, placebo-controlled, multicentric trials, per-
formed in patients with coronary artery disease, the
former (4S) using simvastatin (20 to 40 mg/day),
with a median of 5.5 years of follow-up, the latter
(LIPID) using pravastatin (40 mg/day) for 7 years
of follow-up. There was no successful secondary
analysis of these studies able to demonstrate positi-
ve effects on reduction of fracture risk(129,130). 

Bone formation (serum osteocalcin, and bone-
specific alkaline phosphatase), and of bone resorp-
tion (urinary deoxypyridinoline, and C- and N-ter-
minal cross-linked telopeptides of type I collagen)
marker levels have been analysed in few studies,
trying to appreciate possible activity of statins
administered at different dosis, with controversial
results(131-133). 

Treatment with simvastatin 20 mg/day, for a
period of 4 weeks, led to significant increase of
serum osteocalcin, but not anyone of other bone
markers evaluated (bone-specific alkaline phospha-
tase, and urinary deoxypyridinoline, and C- and N-
terminal cross-linked telopeptides of type I colla-
gen) had similar ongoings(131). 

Contrariwise, fluvastatin 40 mg/die, for a
period of 12 weeks, did not show any beneficial
effect on the aforementioned markers of bone
remodelling(132). 

Another multicentric randomised trial, evalua-
ted effect of different statins, at different doses
(atorvastatin 20 to 40 mg/day, and simvastatin 40 to
80 mg/day), for 12 weeks period, valuing serum
bone-specific alkaline phosphatase and urinary C-
and N-terminal cross-linked telopeptides of type I
collagen. The only significant effect was a dose-
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dependent reduction of serum bone-specific alkali-
ne phosphatase levels in patients treated with sim-
vastatin(133). 

Yet another randomized, placebo-controlled
study, showed no effects of simvastatin, 20 to 40
mg/day, administered in osteopenic women, for 12
weeks, on bone formation (bone-specific alkaline
phosphatase) and resorption (C- and N-terminal
cross-linked telopeptides of type I collagen) mar-
kers(134). 

Late meta-analysis (MA) collected results
from 21 studies valuating statins activity on total
hip (TH), femoral neck (FN) and lumbar spine (LS)
bone mineral density (BMD). Twelve studies con-
cluded to beneficial effect, six to absence of activity
and one to deleterious effect. MA pointed out sta-
tins users had real increase of TH and FN BMDs,
but no effect on LS BMD. Moreover, this meta-ana-
lysis compared different activity of lipophilic and
hydrophilic statins, concluding first one had real
effect, whereas the other seemed not to have same
activity, even if data did not reach statistic signifi-
cance(135).

Finally, another study demonstrated statins
(atorvastatin) have, in hypercholesterolemic pos-
tmenopausal women with established osteoporosis-
osteopenia, modest additive effects to BPs (risedro-
nate) in improving lumbar spine bone mineral den-
sity. Moreover, atorvastatin plus risedronate had
favourable effects on the serum lipid profile: LDL
and total cholesterol(136).

Conclusion

Cardiovascular disease and osteoporosis are
public health problems with several epidemiologi-
cal links and important economic consequences.
Recent studies have demonstrated that cardiovascu-
lar disease and mortality are associated with redu-
ced bone mineral density and bone fracture. It is
also interesting that statins and nitrogen-containing
BPs have similar stimulatory effects on bone mass,
and all of them are known to reduce LDL-choleste-
rol and increase HDL-cholesterol in the plasma. So,
cardiovascular disease and osteoporosis might be
related to each other in terms of pathogenesis and
therapeutic agents. Remedies for primary osteopo-
rosis are increasing in brands, but not always with
concomitant improvement in efficacy and safety.
Clinical studies suggest that nitrogen-containing
BPs alone display sufficient practical effectiveness

to survive as effective therapy. However, their inef-
fectiveness in highly osteopenic patients, due to
their lack of genuine bone anabolic effect, waits
improvements. Statins are cholesterol-lowering
drugs as they inhibit HMG CoA reductase, which is
a rate-limiting enzyme in mevalonate pathway.

Lately, mevalonate metabolites are also shown
to play pivotal roles in the regulation of osteoclast
and osteoblasts proliferation and function.
However, there have been great controversies in
pleiotropic statins effect on bone metabolism.
Although in vitro and in vivo animal studies have
shown positive effects on bone mineralization and
reduction in bone resorption, clinical data on fractu-
re rates and surrogate markers are conflicting.
However, while incomplete and contradictory, these
studies indicate the possibility that, if bioavailabili-
ty to bone could be improved simply changing
dosing methods and/or deliberate derivatization, the
statins genuine anabolic properties in bone could be
extracted and put into therapeutic use. 
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